

Oracle® Grid Engine
User Guide

Release 6.2 Update 7

E21976-02

February 2012

Oracle Grid Engine User Guide, Release 6.2 Update 7

E21976-02

Copyright © 2000, 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Uma Shankar

Contributing Author:

Contributor: Andreas Schwierskott

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions .. vii

1 Getting Started

1.1 How the System Operates ... 1-1
1.2 How Resources Are Matched to Requests .. 1-4
1.3 A Banking Analogy .. 1-4
1.3.1 Jobs and Queues... 1-5
1.4 Usage Policies .. 1-5
1.4.1 Using Tickets to Administer Policies .. 1-6
1.4.2 Using the Urgency Policy to Assign Job Priority ... 1-6
1.5 Choosing a User Interface... 1-7
1.5.1 QMON - The Graphical User Interface... 1-7
1.5.2 The Command Line Interface .. 1-8
1.5.3 The Distributed Resource Management Application API (DRMAA) 1-8
1.6 Users and User Categories... 1-8

2 Using Grid Engine

2.1 Interacting With Grid Engine as a User... 2-1
2.1.1 Launching QMON From the Command Line ... 2-1
2.1.2 Customizing QMON ... 2-2
2.1.3 Using the Command-Line Interface.. 2-2
2.2 Displaying User Properties... 2-2
2.2.1 User Access Permissions.. 2-3
2.2.2 Displaying Managers, Operators, Owners, and User Access Permissions 2-4
2.3 Displaying Host Properties .. 2-5
2.4 Displaying Queue Properties ... 2-6
2.4.1 Interpreting Queue Property Information .. 2-6
2.5 Submitting Jobs .. 2-7
2.5.1 How Jobs Are Scheduled... 2-7
2.5.2 Usage Policies... 2-8
2.5.3 Job Priorities .. 2-9

iv

2.5.4 Ticket Policies .. 2-9
2.5.5 Queue Selection... 2-9
2.5.6 Defining Resource Requirements.. 2-10
2.5.7 Requestable Attributes.. 2-12
2.6 Submitting Batch Jobs ... 2-15
2.6.1 About Shell Scripts .. 2-15
2.6.2 Extensions to Regular Shell Scripts ... 2-16
2.6.2.1 How a Command Interpreter is Selected... 2-16
2.6.2.2 Output Redirection... 2-16
2.6.2.3 Active Comments ... 2-17
2.6.2.4 Environment Variables .. 2-18
2.7 Submitting Array Jobs... 2-20
2.7.1 How to Configure Array Task Dependencies From the Command Line 2-20
2.7.2 How to Submit an Array Job From the Command Line.. 2-23
2.7.3 How to Submit an Array Job With QMON .. 2-23
2.8 Submitting Interactive Jobs ... 2-23
2.8.1 How to Submit Interactive Jobs From the Command Line 2-24
2.8.1.1 Using qrsh to Submit Interactive Jobs ... 2-24
2.8.1.2 Using qsh to Submit Interactive Jobs... 2-25
2.8.1.3 Using qlogin to Submit Interactive Jobs.. 2-25
2.8.2 How to Submit Interactive Jobs With QMON... 2-26
2.9 Transparent Remote Execution... 2-27
2.9.1 Remote Execution With qrsh.. 2-27
2.9.1.1 Invoking Transparent Remote Execution With qrsh... 2-28
2.9.2 Transparent Job Distribution With qtcsh ... 2-28
2.9.2.1 qtcsh Usage... 2-29
2.9.3 Parallel Makefile Processing With qmake.. 2-30
2.9.3.1 qmake Usage .. 2-31
2.10 How to Submit a Simple Job From the Command Line.. 2-32
2.11 How to Submit a Simple Job With QMON ... 2-34
2.12 How to Submit an Extended Job From the Command Line... 2-36
2.13 How to Submit an Extended Job With QMON .. 2-36
2.14 How to Submit an Advanced Job From the Command Line ... 2-39
2.14.1 Specifying the Use of a Script or a Binary .. 2-40
2.14.2 Default Request Files... 2-40
2.15 How to Submit an Advanced Job With QMON... 2-41
2.16 How to Configure Job Dependencies From the Command Line..................................... 2-43
2.17 Monitoring Hosts from the Command Line .. 2-43
2.17.1 Using qconf.. 2-43
2.17.2 Using qhost .. 2-43
2.18 How to Monitor Hosts With QMON ... 2-44
2.18.1 Hosts Status ... 2-44
2.19 Monitoring and Controlling Jobs... 2-45
2.19.1 How to Monitor Jobs From the Command Line ... 2-45
2.19.2 How to Monitor Jobs With QMON... 2-47
2.19.2.1 How to Get Additional Information About Jobs With the QMON Object Browser .

2-48
2.19.3 How to Control Jobs From the Command Line .. 2-48

v

2.19.4 How to Control Jobs With QMON... 2-49
2.19.5 How to Monitor Jobs by Email .. 2-52
2.19.6 How to Monitor Jobs by Email With QMON ... 2-53
2.20 Monitoring and Controlling Queues .. 2-53
2.20.1 How to Control Queues From the Command Line .. 2-53
2.20.2 How to Monitor and Control Cluster Queues With QMON 2-54
2.20.2.1 Cluster Queue Status... 2-54
2.20.3 How to Monitor Queues With QMON.. 2-55
2.21 Using Job Checkpointing .. 2-56
2.21.1 Migrating Checkpointing Jobs.. 2-56
2.21.2 File System Requirements for Checkpointing .. 2-56
2.21.3 Writing a Checkpointing Job Script ... 2-56
2.21.4 How to Submit a Checkpointing Job From the Command Line............................... 2-57
2.21.5 How to Submit a Checkpointing Job With QMON .. 2-58
2.22 Managing Core Binding.. 2-58
2.22.1 Submit Simple Jobs with Core Binding ... 2-58
2.22.2 Submit Array Jobs with Core Binding... 2-58
2.22.3 Submit Parallel Jobs with Core Binding .. 2-59
2.22.3.1 Submit Tightly Integrated Parallel Jobs with Core Binding............................... 2-60
2.23 Automating Grid Engine Functions Through DRMAA.. 2-60
2.23.1 Developing With the C Language Binding... 2-60
2.23.1.1 Important Files for the C Language Binding... 2-61
2.23.1.2 Including the DRMAA Header File .. 2-61
2.23.1.3 Compiling Your C Application .. 2-61
2.23.1.4 Running Your C Application.. 2-61
2.23.1.5 C Application Examples .. 2-62
2.23.2 Developing With the Java Language Binding ... 2-65
2.23.2.1 Important Files for the Java Language Binding ... 2-65
2.23.2.2 Importing the DRMAA Java Classes and Packages .. 2-65
2.23.2.3 Compiling Your Java Application.. 2-65
2.23.2.4 How to Use DRMAA With NetBeans 5.x .. 2-65
2.23.2.5 Running Your Java Application ... 2-66
2.23.2.6 Java Application Examples ... 2-66
2.24 Using the Accounting and Reporting Console .. 2-68
2.25 Installing the Accounting and Reporting Console (ARCo) .. 2-69
2.25.1 Configuring the Database Server ... 2-69
2.25.2 How to Configure the ARCo Database on MySQL ... 2-69
2.25.3 How to Configure the ARCo Database on PostgresSQL ... 2-70
2.25.4 How to Configure the ARCo Database with Multiple Schemas on PostgresSQL . 2-71
2.25.5 How to Configure the MySQL Database Server .. 2-73
2.25.5.1 MySQL Installation Tips... 2-73
2.25.5.2 Case Sensitivity in MySQL Database.. 2-73
2.25.6 How to Configure the PostgresSQL Server .. 2-75
2.25.7 Using the Oracle Database ... 2-77
2.25.8 How to Add Authorized ARCo Users... 2-78
2.25.9 How to Install dbwriter ... 2-78
2.25.10 Example dbwriter Installation ... 2-82

vi

2.25.11 How to Install Reporting ... 2-86
2.25.12 Example Reporting Installation .. 2-88
2.25.13 How to Install Sun Java Web Console ... 2-92
2.26 Planning the ARCo Installation ... 2-93
2.26.1 Supported Operating Platforms ... 2-94
2.26.2 Required Software .. 2-94
2.26.3 Disk Space Recommendations.. 2-95
2.26.4 Multi-Cluster Support Overview ... 2-95
2.26.5 Database Configuration Illustrations... 2-95
2.26.6 Schema Overview ... 2-97
2.27 How to Start ARCo .. 2-98
2.27.1 How to Start the Accounting and Reporting Console... 2-98
2.27.2 Creating and Modifying Simple Queries .. 2-99
2.27.3 Creating and Modifying Advanced Queries .. 2-102
2.27.4 Configuring the Query Results View... 2-104
2.27.5 Examples for Defining Graphical Views... 2-107
2.28 ARCo Configuration Files and Scripts.. 2-109
2.28.1 About dbwriter... 2-110
2.28.1.1 inst_dbwriter Command Options ... 2-110
2.28.1.2 dbwriter Configuration Parameters.. 2-110
2.28.1.3 sgedbwriter Command Options.. 2-111
2.28.2 About Reporting .. 2-112
2.28.3 Other ARCo Utilities .. 2-114
2.29 Creating Cross-Cluster Queries ... 2-115
2.30 Examples ... 2-116
2.30.1 Example - arco_write_london.sge_user... 2-116
2.30.2 Example - arco_write_denver.sge_user... 2-116
2.31 Derived Values and Deletion Rules .. 2-117
2.31.1 Derived Values.. 2-117
2.31.1.1 Derived Values Format.. 2-117
2.31.1.2 Derived Values Examples ... 2-118
2.31.2 Deleting Outdated Records .. 2-119
2.31.2.1 Deletion Rules Format .. 2-119
2.31.2.2 Deletion Rules Examples .. 2-120
2.32 ARCo Frequently-Asked Questions.. 2-121
2.33 ARCo Troubleshooting ... 2-122

3 Upgrading ARCO

3.1 How to Migrate a PostgreSQL Database to a Different Schema... 3-1
3.2 How to Upgrade the ARCo Software .. 3-4

A Command Line Interface Ancillary Programs

A.1 List of Ancillary Programs.. A-1
A.2 User Access to the Ancillary Program .. A-2

vii

Preface

The Oracle® Grid Engine User’s Guide provides a description about Oracle Grid
Engine architecture, system operation, and how to use the software to apply resource
management strategies to distribute jobs across a grid

Audience
This document is intended for system administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Grid Engine Release
6.2 documentation:

■ Oracle Grid Engine Release Notes

■ Oracle Grid Engine Installation Guide

■ Oracle Grid Engine Administration Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

viii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Getting Started 1-1

1Getting Started

A grid is a collection of computing resources that performs tasks. In its simplest form,
a grid appears to users as a large system that provides a single point of access to
powerful distributed resources. In its more complex form, a grid can provide many
access points to users.

The Grid Engine software enables you to apply resource management strategies to
distribute jobs across a grid. Users can submit millions of jobs at a time without being
concerned about where the jobs run. The system supports clusters with up to 63,000
cores.

Sites configure the system to maximize usage and throughput, while the system
supports varying levels of timeliness and importance. Job priority and user share are
instances of importance.

The Grid Engine software provides advanced resource management and policy
administration for UNIX and Windows environments that are composed of multiple
shared resources. For more on Grid Engine's features, see the product web site at:

http://www.oracle.com/us/products/tools/oracle-grid-engine-07554
9.html

1.1 How the System Operates
The Grid Engine system does the following:

■ Accepts jobs - Jobs are users' requests for computer resources. Each job includes a
description of what to do and a set of property definitions that describe how the
job should be run. Users can submit jobs via the command line interface or Grid
Engine's graphical user interface, QMON. Users can also use the optional
Distributed Resource Management Application API (DRMAA) to automate grid
engine functions by writing scripts to submit and control jobs.

■ Holds jobs - The Grid Engine master daemon holds jobs until the needed compute
resources become available.

■ Sends - When the compute resources become available, the master daemon sends
the job to the appropriate execution host. The execution daemon on that host then
executes the job.

■ Manages running jobs - The master daemon manages running jobs. At a fixed
interval, the master daemon receives reports from each execution daemon.

■ Logs the record of job execution when the jobs are finished - The master daemon
stores raw data. Users can also use the Accounting and Reporting Console (ARCo)
to gather live reporting data from the Grid Engine system and to store the data for
historical analysis in the reporting database, which is a standard SQL database.

http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html

How the System Operates

1-2 Oracle Grid Engine User Guide

Figure 1–1 Grid Engine System Operation

Table 1–1 Component Description

Component Description More Info

Cluster A collection of machines, called hosts,
on which Grid Engine system
functions occur.

See CONFIGURING
CLUSTERS.

Master Host The master host is central to cluster
activity. The master host runs the
master daemon and usually also runs
the scheduler. The master host
requires no further configuration other
than that performed by the installation
procedure. By default, the master host
is also an administration host and a
submit host.

For information about
how to initially set up the
master host, see Oracle
Grid Engine Installation
and Upgrade Guide to
install the master host.
For information about
how to configure
dynamic changes to the
master host, see Oracle
Grid Engine
Administration Guide for
configuring hosts.

Master Daemon The master daemon does the
following:

■ Accepts incoming jobs from users.

■ Maintains tables about hosts,
queues, jobs, system load, and
user permissions.

■ Performs scheduling functions
and requests actions from
execution daemons on the
appropriate execution hosts.

■ Decides which jobs are dispatched
to which queues and how to
reorder and reprioritize jobs to
maintain share, priority, or
deadline

See Oracle Grid Engine
Administration Guide for
configuring hosts.

How the System Operates

Getting Started 1-3

Execution Host Systems that have permission to run
Grid Engine system jobs. These
systems host queue instances, and run
the execution daemon. Execution hosts
are systems that have permission to
execute jobs. Therefore, queue
instances are attached to the execution
hosts.

An execution host is
initially set up by the
installation procedure, as
described in Oracle Grid
Engine Installation and
Upgrade Guide to install
execution hosts. For
installation planning
guidance, see Oracle Grid
Engine Installation and
Upgrade Guide for host
system requirements. See
Oracle Grid Engine
Administration Guide for
more information on
managing your cluster.

Execution Daemon The execution daemon receives jobs
from the master daemon and executes
them locally on its host. An execution
daemon is responsible for the queue
instances on its host and for the
running of jobs in these queue
instances. Periodically, the execution
daemon forwards information such as
job status or load on its host to the
master daemon.

See Oracle Grid Engine
Administration Guide for
configuring hosts.

Scheduler The scheduler is responsible for
prioritizing pending jobs and deciding
which jobs to schedule to which
resources.

For more information on
the scheduler, see Oracle
Grid Engine
Administration Guide for
managing the scheduler.

Administration
Host

Administration hosts are hosts that
have permission to carry out any kind
of administrative activity for the Grid
Engine system.

See Oracle Grid Engine
Administration Guide for
configuring hosts.

Submit Host Submit hosts enable users to submit
and control batch jobs only. In
particular, a user who is logged in to a
submit host can submit jobs with the
qsub command, can monitor the job
status with the qstat command, and
can use the Grid Engine system OSF/1
Motif graphical user interface QMON,
which is described in QMON, the Grid
Engine System's Graphical User
Interface.

See Oracle Grid Engine
Administration Guide for
configuring hosts.

Shadow Master
Host

Shadow master hosts reduce
unplanned cluster downtown. One or
more shadow master hosts may be
running on additional nodes in a
cluster. In the case that the master
daemon or the host on which it is
running fails, one of the shadow
masters will promote the host on
which it is running to the new master
daemon system by locally starting a
new master daemon.

See Oracle Grid Engine
Installation and Upgrade
Guide for information
about how to install the
shadow master host.

Table 1–1 (Cont.) Component Description

Component Description More Info

How Resources Are Matched to Requests

1-4 Oracle Grid Engine User Guide

1.2 How Resources Are Matched to Requests
■ A Banking Analogy

■ Usage Policies

1.3 A Banking Analogy
As an analogy, imagine a large "money-center" bank in one of the world's capital cities.
In the bank's lobby are dozens of customers waiting to be served. Each customer has
different requirements. One customer wants to withdraw a small amount of money
from his account. Arriving just after him is another customer, who has an appointment
with one of the bank's investment specialists. She wants advice before she undertakes
a complicated venture. Another customer in front of the first two customers wants to
apply for a large loan, as do the eight customers in front of her.

Different customers with different needs require different types of service and
different levels of service from the bank. Perhaps the bank on this particular day has
many employees who can handle the one customer's simple withdrawal of money
from his account. But at the same time the bank has only one or two loan officers
available to help the many loan applicants. On another day, the situation might be
reversed.

The effect is that customers must wait for service unnecessarily. Many of the
customers could receive faster service if only their needs were immediately recognized
and then matched to available resources.

If the Grid Engine system were the bank manager, the service would be organized
differently:

■ On entering the bank lobby, customers would be asked to declare their name, their
affiliations, and their service needs.

■ Each customer's time of arrival would be recorded.

DRMAA The optional Distributed Resource
Management Application API
(DRMAA) automates Grid Engine
functions by writing scripts that run
Grid Engine commands and parse the
results.

See Automating Grid
Engine Functions
Through DRMAA.

ARCo The optional Accounting and
Reporting Console (ARCo) enables
you to gather live reporting data from
the Grid Engine system and to store
the data for historical analysis in the
reporting database, which is a
standard SQL database.

For more information,
see Using the Accounting
and Reporting Console.

SDM The optional Service Domain Manager
(SDM) module distributes resources
between different services according to
configurable Service Level Agreements
(SLAs). The SLAs are based on Service
Level Objectives (SLOs). SDM
functionality enables you to manage
resources for all kind of scalable
services.

See SERVICE DOMAIN
MANAGER for more
information.

Table 1–1 (Cont.) Component Description

Component Description More Info

Usage Policies

Getting Started 1-5

■ Based on the information that the customers provided in the lobby, the bank
might serve the following customers in the following order:

1. Customers whose needs match suitable and immediately available resources

2. Customers whose requirements have the highest priority

3. Customers who were waiting in the lobby for the longest time

■ In a "Grid Engine system bank", one bank employee might be able to help several
customers at the same time. The Grid Engine software would try to assign new
customers to the least-loaded and most-suitable bank employee.

■ As bank manager, the Grid Engine system would allow the bank to define service
policies. Typical service policies might be the following:

– To provide preferential service to commercial customers because those
customers generate more profit

– To make sure a certain customer group is served well, because those
customers have received bad service in the past

– To ensure that customers with an appointment get a timely response

– To provide preferential treatment to certain customers because those
customers were identified by a bank executive as high priority customers

■ These policies would be implemented, monitored, and adjusted automatically by a
Grid Engine system manager. Customers that have preferential access would be
served sooner. Such customers would receive more attention from employees. The
Grid Engine manager would recognize if the customers do not make progress. The
manager would immediately respond by adjusting service levels to comply with
the bank's service policies.

1.3.1 Jobs and Queues
In a Grid Engine system, jobs correspond to bank customers. Jobs wait in a computer
holding area instead of a lobby. Queues, which provide services for jobs, correspond
to bank employees. As in the case of bank customers, the requirements of each job,
such as available memory, execution speed, available software licenses, and similar
needs, can be very different. Only certain queues might be able to provide the
corresponding service.

To continue the analogy, the Grid Engine software arbitrates available resources and
job requirements in the following way:

■ A user who submits a job through the Grid Engine software declares a
requirement profile for the job. In addition, the software retrieves the identity of
the user. The software also retrieves the user's affiliation with projects or user
groups. The time that the user submitted the job is also stored.

■ The moment that a queue is available to run a new job, the Grid Engine software
determines what are the suitable jobs for the queue. The software immediately
dispatches the job that has either the highest priority or the longest waiting time.

■ Queues allow concurrent execution of many jobs. The Grid Engine software tries
to start new jobs in the least loaded and most suitable queue.

1.4 Usage Policies
The administrator of a cluster can define high-level usage policies that are customized
according to the site. Four usage policies are available:

Usage Policies

1-6 Oracle Grid Engine User Guide

■ Urgency - Using this policy, each job's priority is based on an urgency value. The
urgency value is derived from the job's resource requirements, the job's deadline
specification, and how long the job waits before it is run.

■ Functional - Using this policy, an administrator can provide special treatment
because of a user's or a job's affiliation with a certain user group, project, and so
forth.

■ Share-based - Under this policy, the level of service depends on an assigned share
entitlement, the corresponding shares of other users and user groups, the past
usage of resources by all users, and the current presence of users within the
system.

■ Override - This policy requires manual intervention by the cluster administrator,
who modifies the automated policy implementation.

Policy management automatically controls the use of shared resources in the cluster to
best achieve the goals of the administration. High priority jobs are dispatched
preferentially. Such jobs receive higher CPU entitlements if the jobs compete for
resources with other jobs. The Grid Engine software monitors the progress of all jobs
and adjusts their relative priorities correspondingly and with respect to the goals
defined in the policies.

1.4.1 Using Tickets to Administer Policies
The functional, share-based, and override policies are defined through a Grid Engine
concept that is called tickets. You might compare tickets to shares of a public
company's stock. The more shares of stock that you own, the more important you are
to the company. If shareholder A owns twice as many shares as shareholder B, A also
has twice the votes of B. Therefore shareholder A is twice as important to the
company. Similarly, the more tickets that a job has, the more important the job is. If job
A has twice the tickets of job B, job A is entitled to twice the resource usage of job B.

Jobs can retrieve tickets from the functional, share-based, and override policies. The
total number of tickets, as well as the number retrieved from each ticket policy, often
changes over time.

The administrator controls the number of tickets that are allocated to each ticket policy
in total. Just as ticket allocation does for jobs, this allocation determines the relative
importance of the ticket policies among each other. Through the ticket pool that is
assigned to particular ticket policies, the Grid Engine software can run in different
ways. For example, the software can run in a share-based mode only. Or the software
can run in a combination of modes, for example, 90% share-based and 10% functional.

1.4.2 Using the Urgency Policy to Assign Job Priority
The urgency policy can be used in combination with two other job priority
specifications:

■ The number of tickets assigned by the functional, share-based, and override
policies

■ A priority value specified by the qsub -p command

A job can be assigned an urgency value, which is derived from three sources:

■ The job's resource requirements

■ The length of time that a job must wait before the job runs

■ The time at which a job must finish running

Choosing a User Interface

Getting Started 1-7

The administrator can separately weight the importance of each of these sources to
arrive at a job's overall urgency value. For more information, see Oracle Grid Engine
Administration Guide for managing policies.

The following figure shows the correlation among policies in a Grid Engine system.

Figure 1–2 Policy Correlation in Grid Engine

1.5 Choosing a User Interface
To meet the needs of your environment, the following interface tools are available:

■ QMON - The Graphical User Interface

■ The Command Line Interface

■ The Distributed Resource Management Application API (DRMAA)

1.5.1 QMON - The Graphical User Interface
If you prefer using a graphical user interface, you can use QMON to accomplish most
Grid Engine system tasks. The QMON Main Control window, which is show below, is
often the starting point for user and administrator functions.

Users and User Categories

1-8 Oracle Grid Engine User Guide

Figure 1–3 QMON Main Control Window

For more information on QMON if you are an administrator, see Oracle Grid Engine
Administration Guide for interacting with Grid Engine as an administrator. For more
information on QMON if you are an user, see Interacting With Grid Engine as a User.

1.5.2 The Command Line Interface
If you prefer using the command line, the command line user interface includes a
flexible a set of ancillary programs (commands) that enable you to interact with the
Grid Engine system.

For more information on the command line if you are an administrator, see Oracle Grid
Engine Administration Guide for interacting with Grid Engine as an administrator. For
more information on the command line if you are an user, see Interacting With Grid
Engine as a User. For information on the ancillary programs that Grid Engine provides
and which users have access to these commands, see Command Line Interface
Ancillary Programs.

1.5.3 The Distributed Resource Management Application API (DRMAA)
You can automate Grid Engine functions by writing scripts that run Grid Engine
commands and parse the results. However, for more consistent and efficient results,
you can use the Distributed Resource Management Application API (DRMAA). For
more information about the DRMAA concept and how to use it with the C and Java TM
languages, see Automating Grid Engine Functions Through DRMAA.

1.6 Users and User Categories
There are four categories of users that each have access to their own set of Grid Engine
system commands:

■ Managers - Managers have full capabilities to manipulate the Grid Engine system.
By default, the superusers of all administration hosts have manager privileges.

Users and User Categories

Getting Started 1-9

■ Operators - Users who can perform the same commands as managers except that
they cannot change the configuration. Operators are supposed to maintain
operation.

■ Users - People who can submit jobs to the grid and run them if they have a valid
login ID on at least one submit host and one execution host. Users have no cluster
management or queue management capabilities.

■ Owners - Users who can suspend or resume and disable or enable the queues they
own. Typically, users are owners of the queue instances that reside on their
workstations. Queue owners can be managers, operators, or users. Users are
commonly declared to be owners of the queue instances that reside on their
desktop workstations. See Oracle Grid Engine Administration Guide for more
information about configuring owners parameters with QMON.

For information on which command capabilities are available to the different user
categories, see Command Line Interface Ancillary Programs.

Users and User Categories

1-10 Oracle Grid Engine User Guide

2

Using Grid Engine 2-1

2Using Grid Engine

This section focuses on using Grid Engine to perform tasks that distribute workload
across your grid systems:

2.1 Interacting With Grid Engine as a User
This section describes how to launch the QMON from the command line, customize
the QMON, and use the command-line interface.

2.1.1 Launching QMON From the Command Line
To launch QMON from the command line, type the following command:

Topic Description

Interacting With Grid
Engine as a User

Learn how you can use the command line interface,
the graphical user interface (QMON), and the
Distributed Resource Management Application API
(DRMAA) to interact with the Grid Engine system.

Displaying User
Properties

Learn how to display user properties.

Displaying Host
Properties

Learn how to display host properties.

Displaying Queue
Properties

Learn how to display queue properties.

Submitting Jobs Learn how to submit jobs.

Monitoring Hosts
from the Command
Line

Learn how to monitor and control hosts.

Monitoring and
Controlling Jobs

Learn how to monitor and control jobs.

Monitoring and
Controlling Queues

Learn how to monitor and control queues.

Using Job
Checkpointing

Learn how to use job checkpointing as another
method for monitoring jobs.

Managing Core
Binding

Learn how to bind jobs to processor cores on the
execution host.

Using the Accounting
and Reporting
Console

Learn how to gather and view information about
how effectively your workload distribution uses
resources.

Displaying User Properties

2-2 Oracle Grid Engine User Guide

qmon

2.1.2 Customizing QMON
A specifically designed resource file largely defines the QMON look and feel.
Reasonable defaults are compiled in $SGE_ROOT/qmon/Qmon. This file also includes
a sample resource file. Refer to the comment lines in the sample Qmon file for detailed
information on the possible customizations.

Users can configure the following personal preferences:

■ Users can modify the Qmon file.

■ The Qmon file can be moved to the home directory or to another location pointed
to by the private XAPPLRESDIR search path.

■ Users can include the necessary resource definitions in their private .Xdefaults
or .Xresources files. A private Qmon resource file can also be installed using
the xrdb command. The xrdb command can be used during operation. xrdb can
also be used at startup of the X11 environment, for example, in a .xinitrc
resource file.

You can also use the Job Customize and Queue Customize dialog boxes to customize
QMON. These dialog boxes are shown in Monitoring and Controlling Jobs. In both
dialog boxes, users can use the Save button to store the filtering and display
definitions to the .qmon_preferences file in their home directories. When QMON
is restarted, this file is read, and QMON reactivates the previously defined behavior.

For information on what your administrator can configure, see Oracle Grid Engine
Administration Guide.

2.1.3 Using the Command-Line Interface
As a user, you will find the following commands particularly useful:

■ qalter - Modify a pending batch job.

■ qdel - Delete a queue.

■ qhost - Show the status of hosts, queues, and jobs.

■ qlogin - Submit an interactive login session.

■ qrsh - Submit an interactive rsh session.

■ qsub - Submit Jobs

■ qstat - Check the status of a job queue.

■ qtcsh - Used as interactive command interpreter as well as for the processing of
tcsh shell scripts.

For a complete list of ancillary programs, see Command Line Interface Ancillary
Programs.

2.2 Displaying User Properties
For information on the different categories of Grid Engine users, see Users and User
Categories.

Displaying User Properties

Using Grid Engine 2-3

2.2.1 User Access Permissions

The administrator can restrict access to queues and other facilities, such as parallel
environment interfaces. Access can also be restricted to certain users or user groups.
For more information on how administrators configure access lists, see Oracle Grid
Engine Adminintration Guide for configuring user access.

Users who belong to ACLs that are listed in access-allowed-lists have permission to
access the queue or the parallel environment interface. Users who are members of
ACLs in access-denied-lists cannot access the resource in question.

ACLs are also used to define projects, to which assigned users can submit their jobs.
The administrator can also restrict access to cluster resources on a per project basis. For
more on projects, see Oracle Grid Engine Administration Guide for configuring projects.

The User Configuration dialog box opens when you click the User Configuration
button in the QMON Main Control window. This dialog box enables you to query for
the ACLs to which you have access. For details, see Oracle Grid Engine Administration
Guide for managing user access.

You can display project access by clicking the Project Configuration icon in the QMON
Main Control window. Details are described in Oracle Grid Engine Administration Guide
for configuring projects.

The ACLs consist of user account names and UNIX group names. The UNIX group
names are identified by a prefixed @ sign. In this way, you can determine which ACLs
your account belongs to.

You can check for those queues or parallel environment interfaces to which you have
access or to which your access is denied. Query the queue or parallel environment
interface configuration, as described in Displaying Queue Properties and Oracle Grid
Engine Administration Guide for managing parallel environments.

The access-allowed-lists are named user_lists. The access-denied-lists are named
xuser_lists. If your user account or primary UNIX group is associated with an
access-allowed-list, you are allowed to access the resource in question. If you are
associated with an access-denied-list, you cannot access the queue or parallel
environment interface. If both lists are empty, every user with a valid account can
access the resource in question.

If you have access to a project, you are allowed to submit jobs that are subordinated to
the project. You can submit such jobs from the command line using the following
command:

% qsub -P <project-name> <options>

The cluster configurations, host configurations, and queue configurations define
project access in the same way as for ACLs. These configurations use the project_
lists and xproject_lists parameters for this purpose.

Note: The Grid Engine software automatically takes into account the
access restrictions configured by the cluster administration. The
following sections are important only if you want to query your
personal access permission.

Note: If you have permission to switch your primary UNIX group
with the newgrp command, your access permissions might change.

Displaying User Properties

2-4 Oracle Grid Engine User Guide

2.2.2 Displaying Managers, Operators, Owners, and User Access Permissions

How to Display A List of Managers From the Command Line
To display a list of managers, type the following command:

qconf -sm

How to Display a List of Managers With QMON
1. Click on the User Configuration button on the QMON Main Control window.

2. Click on the Manager tab.

A list of currently-configured managers are displayed.

How to Display A List of Operators From the Command Line
To display a list of operators, type the following command:

qconf -so

How to Display a List of Operators With QMON
1. Click on the User Configuration button on the QMON Main Control window.

2. Click on the Operator tab. A list of currently-configured operators are displayed.

How to Display a List of Owners From the Command Line
To display a list of owners, type the following command:

qconf -sq {<cluster-queue> | <queue-instance> | <queue-domain>}

How to Display a List of Owners With QMON
1. Click on the User Configuration button on the QMON Main Control window.

2. Click on the Owner tab.

How to Display User Access Lists From the Command Line
To display a list of currently configured ACLS, type the following command:

qconf -sul

To display a list of currently configured ACLS, type the following command:

qconf -su <acl-name> [,<...>]

How to Display User Access Lists With QMON
1. Click User Configuration on the QMON Main Control window.

2. Click the Userset tab. This dialog box enables you to query for the ACLs to which
you have access. You can also see what projects to which you have access. For
more on projects, see Oracle Grid Engine Administration Guide.

Note: The superuser of an administration host is considered to be a
manager by default.

Displaying Host Properties

Using Grid Engine 2-5

How to Display a List of Defined Projects From the Command Line
To display a list of all defined projects, type the following command:

qconf -sprjl

To display a specific project configuration, type the following command:

qconf -sprj <project-name>

How to Display a List of Defined Projects With QMON

2.3 Displaying Host Properties
Clicking the Host Configuration button in the QMON Main Control window displays
an overview of the functionality that is associated with the hosts in your cluster. You
need to have manager privileges to apply any changes to the configuration.

The host configuration dialog boxes are described in Oracle Grid Engine Administration
Guide for configuring hosts.

How to Display the Name of the Master Host From the Command Line
The location of the master host can migrate between the current master host and one
of the shadow master hosts at any time. Therefore, the location of the master host
should be transparent to the user.

To display the name of the master host, view $SGE_ROOT/$SGE_
CELL/common/act_qmaster file in a text editor.

The name of the current master host is listed in the file.

How to Display a List of Execution Hosts From the Command Line
To display a complete list of the execution hosts in your cluster, type the following
command:

qconf -sel

To display the configuration for a specific execution host, type the following
command:

qconf -se <hostname>

To display status and load information about execution hosts, type the following
command:

qhost

How to Display a List of Administration Host From the Command Line
To display a list of administration hosts, type the following command:

qconf -sh

How to Display a List of Submit Hosts From the Command Line
To display a list of submit hosts, type the following command:

qconf -ss

Displaying Queue Properties

2-6 Oracle Grid Engine User Guide

2.4 Displaying Queue Properties
To make the best use of the Grid Engine system at your site, you should be familiar
with the queue structure. You should also be familiar with the properties of the queues
that are configured for your Grid Engine system.

How to Display a List of Queues From the Command Line
To display a list of queues from the command line, type the following command:

% qconf -sql

How to Display a List of Queues With QMON
1. Launch the QMON Main Control window.

2. Click the Queue Control button. The Cluster Queue Control dialog box appears.
Queue Control dialog box provides a quick overview of the installed queues and
their current status.

How to Display Queue Properties From the Command Line
To display queue properties from the command line, type the following command:

% qconf -sq {<queue> | <queue-instance> | <queue-domain>}

How to Display Queue Properties With QMON
1. Launch the QMON Main Control window.

2. Click the Queue Control button. The Cluster Queue Control dialog box appears.

3. Select a queue, and then click Show Detached Settings. The Browser dialog box
appears.

4. In the Browser dialog box, click Queue.

5. In the Cluster Queue dialog box, click the Queue Instances tab.

6. Select a queue instance. The Browser dialog box lists the queue properties for the
selected queue instance.

2.4.1 Interpreting Queue Property Information
The following is a list of some of the more important parameters:

■ qname - The queue name as requested.

■ hostlist - A list of hosts and host groups associated with the queue.

■ processors - The processors of a multiprocessor system to which the queue has
access.

■ qtype - The type of job that can run in this queue. Currently, the type can be
either batch or interactive.

■ slots - The number of jobs that can be executed concurrently in that queue.

■ owner_list - The owners of the queue. For more information, see Users and
User Categories.

Caution: Do not change this value unless you are certain that you
need to change it.

Submitting Jobs

Using Grid Engine 2-7

■ user_lists - The user or group identifiers in the user access lists who can access
the queue. For more information, see Displaying User Properties.

■ xuser_lists - The user or group identifiers in the user access lists who cannot
access the queue. For more information, see Displaying User Properties.

■ project_lists - The jobs submitted with the project identifiers that can access
the queue. For more information, see Oracle Grid Engine Administration Guide.

■ xproject_lists - The jobs submitted with the project identifiers that cannot
access the queue. For more information, see Oracle Grid Engine Administration
Guide.

■ complex_values - Assigns capacities as provided for this queue for certain
complex resource attributes. For more information, see Requestable Attributes.

2.5 Submitting Jobs
A job is a segment of work. Each job includes a description of what to do and a set of
property definitions that describe how the job should be run.

The Grid Engine system recognizes the following four basic classes of jobs:

■ Batch Jobs - Single segments of work. Typically, a batch job is only executed once.

■ Array Jobs - Groups of similar work segments that can all be run in parallel but are
completely independent of one another. All of the workload segments of an array
job, known as tasks, are identical except for the data sets on which they operate.

■ Parallel Jobs - Jobs composed of cooperating tasks that must all be executed at the
same time, often with requirements about how the tasks are distributed across the
resources.

■ Interactive Jobs - Jobs that provide the submitting user with an interactive login to
an available resource in the compute cluster. Interactive jobs allow users to
execute work on the compute cluster that is not easily submitted as a batch job.

2.5.1 How Jobs Are Scheduled
The Grid Engine system schedules jobs using the following process:

1. A scheduling run is triggered in one of the following ways:

■ At a fixed interval. The default is every 15 seconds.

■ By new job submissions or notification from an execution daemon that one or
more jobs has finished executing.

■ By using qconf -tsm, which an administrator can use to trigger a scheduling
run.

2. The scheduler assesses the needs of all pending jobs against available resources by
considering the following:

■ Administrator's specifications for jobs and queues

■ Each pending job's resource requirements (for example, CPU, memory, and
I/O bandwidth)

Note: If share-based scheduling is used, the calculation takes into
account the usage that has already occurred for that user or project.

Submitting Jobs

2-8 Oracle Grid Engine User Guide

■ Resource reservations that need to be made for future jobs

■ The cluster's current load

■ The host's relative performance

3. As a result of the scheduler's assessment, the Grid Engine system does the
following tasks, as needed:

■ Dispatches new jobs

■ Suspends running jobs

■ Increases or decreases the resources allocated to running jobs

■ Maintains the status quo

Between scheduling actions, the Grid Engine system keeps information about
significant events such as the following:

■ Job submission

■ Job completion

■ Job cancellation

■ An update of the cluster configuration

■ Registration of a new machine in the cluster

2.5.2 Usage Policies
The Grid Engine software's policy management automatically controls the use of
shared resources in the cluster to best achieve the goals of the administration. High
priority jobs are dispatched preferentially and receive better access to resources.

The cluster administrator can define high-level usage policies. The following policies
are available:

■ Functional - Special treatment is given because of affiliation with a certain user
group, project, and so forth.

■ Share-based - Level of service depends on an assigned share entitlement, the
corresponding shares of other users and user groups, the past usage of resources
by all users, and the current presence of users in the system.

■ Urgency - Preferential treatment is given to jobs that have greater urgency. A job's
urgency is based on its resource requirements, how long the job must wait, and
whether the job is submitted with a deadline requirement.

■ Override - Manual intervention by the cluster administrator modifies the
automated policy implementation.

The Grid Engine software can be set up to routinely use either a share-based policy, a
functional policy, or both. These policies can be combined in any proportion, from
giving zero weight to one policy and using only the second policy, to giving both
policies equal weight. Administrators can temporarily override share-based
scheduling and functional scheduling. An override can be applied to an individual job
or to all jobs associated with a user, a department, or a project. For more information,
see Oracle Grid Engine Adminsitration Guide for managing policies.

Along with the routine policies, jobs can be submitted with an initiation deadline. See
the description of the deadline submission parameter under How to Submit an
Advanced Job With QMON. Deadline jobs disturb routine scheduling.

Submitting Jobs

Using Grid Engine 2-9

2.5.3 Job Priorities
The Grid Engine software also lets users set individual job priorities. A user who
submits several jobs can specify, for example, that job 3 is the most important and that
jobs 1 and 2 are equally important but less important than job 3.

Use one of the following options to set priorities:

■ QMON Submit Job parameter Priority

■ qsub -p option.

You can set a priority range of -1023 (lowest) to 1024 (highest). This priority tells the
scheduler how to choose among users' jobs when several jobs are in the system
simultaneously.

2.5.4 Ticket Policies
The functional policy, the share-based policy, and the override policy are all
implemented with tickets. Each ticket policy has a ticket pool from which tickets are
allocated to jobs that are entering the Grid Engine system. Each routine ticket policy
that is in force allocates some tickets to each new job. The ticket policy can reallocate
tickets to the executing job at each scheduling interval.

Tickets weight the three ticket policies. For example, if no tickets are allocated to the
functional policy, then that policy is not used. If an equal number of tickets are
assigned to the functional ticket pool and to the share-based ticket pool, then both
policies have equal weight in determining a job's importance.

The following are criteria that each ticket policy uses to allocate tickets:

■ Grid Engine managers allocate tickets to the routine ticket policies at system
configuration. Managers and operators can change ticket allocations at any time.
Additional tickets can be injected into the system temporarily to indicate an
override. Ticket policies can be combined when tickets are allocated to multiple
ticket policies, a job gets a portion of its tickets from each ticket policy.

■ The Grid Engine system grants tickets to jobs that are entering the system to
indicate their importance under each ticket policy. Each running job can gain
tickets, for example, from an override; lose tickets, for example, because the job is
getting more than its fair share of resources; or keep the same number of tickets at
each scheduling interval. The number of tickets that a job holds represents the
resource share that the Grid Engine system tries to grant that job during each
scheduling interval.

You can display the number of tickets a job holds with QMON or using qstat -ext.
See How to Monitor Jobs With QMON. The qstat command also displays the
priority value assigned to a job, for example, using qsub -p.

2.5.5 Queue Selection
Jobs that are submitted to a named queue go directly to the named queue, regardless
of whether the jobs can be started or need to be spooled. Jobs that are not submitted to
a named queue that cannot be started immediately are put into a spool. The sge_
qmaster then tries to reschedule the jobs until a suitable queue becomes available,

Note: Since users are not permitted to submit jobs with a priority
higher than 0, which is the default, a best administrative practice is to
set the default priority at a lower priority, that is, -100.

Submitting Jobs

2-10 Oracle Grid Engine User Guide

allowing the jobs to be dispatched. Therefore, viewing the queues of the Grid Engine
system as computer science batch queues is valid only for jobs requested by name.
Jobs submitted with nonspecific requests use the spooling mechanism of sge_
qmaster for queueing, thus using a more abstract and flexible queuing concept.

If a job is scheduled and multiple free queues meet its resource requests, the job is
usually dispatched to a suitable queue belonging to the least loaded host. By setting
the scheduler configuration entry queue_sort_method to seq_no, the cluster
administration can change this load-dependent scheme into a fixed order algorithm.
The queue configuration entry seq_no defines a precedence among the queues,
assigning the highest priority to the queue with the lowest sequence number.

2.5.6 Defining Resource Requirements
In the examples so far, the submit options do not express any resource requirements
for the hosts on which the jobs are to be executed. The Grid Engine system assumes
that such jobs can be run on any host. In practice, however, most jobs require that
certain prerequisites be met on the executing host in order for the job to finish
successfully. These prerequisites include:

■ Enough available memory

■ Installation of required software

■ Certain operating system architecture

Also, the cluster administrator usually imposes restrictions on the use of the machines
in the cluster. For example, the CPU time that can be consumed by the jobs is often
restricted.

The Grid Engine system provides users with the means to find suitable hosts for their
jobs without precise knowledge of the cluster`s equipment and its usage policies.
Users specify the requirement of their jobs and let the Grid Engine system manage the
task of finding a suitable and lightly loaded host.

You specify resource requirements through requestable attributes, which are described
in Requestable Attributes. QMON provides a convenient way to specify the
requirements of a job. The Requested Resources dialog box displays only those
attributes in the Available Resource list that are currently eligible. Click Request
Resources in the Submit Job dialog box to open the Requested Resources dialog box.

When you double-click an attribute, the attribute is added to the Hard or Soft
Resources list of the job. A dialog box opens to guide you in entering a value
specification for the attribute in question, except for BOOLEAN attributes, which are
set to True. For more information, see How the Grid Engine System Allocates
Resources.

Figure 2–1 shows a resource profile for a job that requests a solaris64 host with an
available permas license offering at least 750 MBytes of memory. If more than one
queue that fulfills this specification is found, any defined soft resource requirements
are taken into account. However, if no queue satisfying both the hard and the soft
requirements is found, any queue that grants the hard requirements is considered
suitable.

Note: The queue_sort_method parameter of the scheduler
configuration determines where to start the job only if more than one
queue is suitable for a job.

Submitting Jobs

Using Grid Engine 2-11

The attribute permas, an integer, is an administrator extension to the global resource
attributes. The attribute arch, a string, is a host resource attribute. The attribute h_
vmem, memory, is a queue resource attribute.

An equivalent resource requirement profile can as well be submitted from the qsub
command line:

% qsub -l arch=solaris64,h_vmem=750M,permas=1 \
 permas.sh

The implicit -hard switch before the first -l option has been skipped.

The notation 750M for 750 MBytes is an example of the quantity syntax of the Grid
Engine system. For those attributes that request a memory consumption, you can
specify either integer decimal, floating-point decimal, integer octal, and integer
hexadecimal numbers. The following multipliers must be appended to these numbers:

■ k - Multiplies the value by 1000

■ K - Multiplies the value by 1024

■ m - Multiplies the value by 1000 times 1000

■ M - Multiplies the value by 1024 times 1024

Octal constants are specified by a leading zero and digits ranging from 0 to 7 only. To
specify a hexadecimal constant, you must prefix the number with 0x. You must also
use digits ranging from 0 to 9, a through f, and A through F. If no multipliers are
appended, the values are considered to count as bytes. If you are using floating-point
decimals, the resulting value is truncated to an integer value.

For those attributes that impose a time limit, you can specify time values in terms of
hours, minutes, or seconds, or any combination. Hours, minutes, and seconds are
specified in decimal digits separated by colons. A time of 3:5:11 is translated to 11111
seconds. If zero is a specifier for hours, minutes, or seconds, you can leave it out if the
colon remains. Thus a value of :5: is interpreted as 5 minutes. The form used in the
Requested Resources dialog box that is shown in Figure 2–1 is an extension, which is
valid only within QMON.

How the Grid Engine System Allocates Resources
Knowing how the Grid Engine software processes resource requests and allocates
resources is important. The resource allocation algorithm that Grid Engine software
uses is as follows:

1. Read in and parse all default request files. See Default Request Files for details.

2. Process the script file for embedded options. See Active Comments for details.

3. Read all script-embedding options when the job is submitted, regardless of their
position in the script file.

4. Read and parse all requests from the command line.

As soon as all qsub requests are collected, hard and soft requests are processed
separately.

The requests are evaluated in the following order of precedence:

1. From left to right of the script or default request file.

2. From top to bottom of the script or default request file.

3. From left to right of the command line. In other words, you can use the command
line to override the embedded flags.

Submitting Jobs

2-12 Oracle Grid Engine User Guide

Hard requests are processed first. If a hard request is not valid, the submission is
rejected. If one or hard more requests cannot be met at submit time, the job is spooled
and rescheduled to be run at a later time. For example, a hard request might not be
met if a requested queue is busy. If all hard requests can be met, the resources are
allocated and the job can be run.

The soft resource requests are then checked. The job can run even if some or all of
these requests cannot be met. If multiple queues that meet the hard requests provide
parts of the soft resources list, the Grid Engine software selects the queues that offer
the most soft requests.

The job is started and covers the allocated resources.

You might want to gather experience of how argument list options and embedded
options or hard and soft requests influence each other. You can experiment with small
test script files that execute UNIX commands such as hostname or date.

2.5.7 Requestable Attributes
When you submit a job, a requirement profile can be specified. You can specify
attributes or characteristics of a host or queue that the job requires to run successfully.

The attributes that can be used to specify the job requirements are related to one of the
following:

■ The cluster, for example, space required on a network shared disk

■ Individual hosts, for example, operating system architecture

■ Queues, for example, permitted CPU time

The attributes can also be derived from site policies such as the availability of installed
software only on certain hosts.

The available attributes include the following:

■ Queue property list - See Displaying Queue Properties.

■ List of global and host-related attributes - See Oracle Grid Engine Administration
Guide for more information about assigning resource attributes to queues, hosts,
and the global cluster.

■ Administrator-defined attributes

For convenience, however, the administrator commonly chooses to define only a
subset of all available attributes to be requestable.

The Grid Engine system complex contains the definitions for all resource attributes.
For more information about resource attributes, see Oracle Grid Engine Administration
Guide for configuring resource attributes.

How to Display Requestable Attributes From the Command Line
From the command line, type the following:

% qconf -sc

The following example shows sample output from the qconf -sc command:

gimli% qconf -sc
#name shortcut type relop requestable consumable default
urgency
#---

arch a RESTRING == YES NO NONE 0

Submitting Jobs

Using Grid Engine 2-13

calendar c STRING == YES NO NONE 0
cpu cpu DOUBLE >= YES NO 0 0
h_core h_core MEMORY <= YES NO 0 0
h_cpu h_cpu TIME <= YES NO 0:0:0 0
h_data h_data MEMORY <= YES NO 0 0
h_fsize h_fsize MEMORY <= YES NO 0 0
h_rss h_rss MEMORY <= YES NO 0 0
h_rt h_rt TIME <= YES NO 0:0:0 0
h_stack h_stack MEMORY <= YES NO 0 0
h_vmem h_vmem MEMORY <= YES NO 0 0
hostname h HOST == YES NO NONE 0
load_avg la DOUBLE >= NO NO 0 0
load_long ll DOUBLE >= NO NO 0 0
load_medium lm DOUBLE >= NO NO 0 0
load_short ls DOUBLE >= NO NO 0 0
mem_free mf MEMORY <= YES NO 0 0
mem_total mt MEMORY <= YES NO 0 0
mem_used mu MEMORY >= YES NO 0 0
min_cpu_interval mci TIME <= NO NO 0:0:0 0
np_load_avg nla DOUBLE >= NO NO 0 0
np_load_long nll DOUBLE >= NO NO 0 0
np_load_medium nlm DOUBLE >= NO NO 0 0
np_load_short nls DOUBLE >= NO NO 0 0
num_proc p INT == YES NO 0 0
qname q STRING == YES NO NONE 0
rerun re BOOL == NO NO 0 0
s_core s_core MEMORY <= YES NO 0 0
s_cpu s_cpu TIME <= YES NO 0:0:0 0
s_data s_data MEMORY <= YES NO 0 0
s_fsize s_fsize MEMORY <= YES NO 0 0
s_rss s_rss MEMORY <= YES NO 0 0
s_rt s_rt TIME <= YES NO 0:0:0 0
s_stack s_stack MEMORY <= YES NO 0 0
s_vmem s_vmem MEMORY <= YES NO 0 0
seq_no seq INT == NO NO 0 0
slots s INT <= YES YES 1
1000
swap_free sf MEMORY <= YES NO 0 0
swap_rate sr MEMORY >= YES NO 0 0
swap_rsvd srsv MEMORY >= YES NO 0 0
swap_total st MEMORY <= YES NO 0 0
swap_used su MEMORY >= YES NO 0 0
tmpdir tmp STRING == NO NO NONE 0
virtual_free vf MEMORY <= YES NO 0 0
virtual_total vt MEMORY <= YES NO 0 0
virtual_used vu MEMORY >= YES NO 0 0
>#< starts a comment but comments are not saved across edits --------

The column name is identical to the first column displayed by the qconf -sq
command. The shortcut column contains administrator-definable abbreviations for the
full names in the first column. The user can supply either the full name or the shortcut
in the request option of a qsub command.

The column requestable tells whether the resource attribute can be used in a qsub
command. The administrator can, for example, disallow the cluster's users to request
certain machines or queues for their jobs directly. The administrator can disallow
direct requests by setting the entries qname, hostname, or both, to be unrequestable.
Making queues or hosts unrequestable implies that feasible user requests can be met in
general by multiple queues, which enforces the load balancing capabilities of the Grid
Engine system.

Submitting Jobs

2-14 Oracle Grid Engine User Guide

The column relop defines the relational operator used to compute whether a queue or
a host meets a user request. The comparison that is executed is as follows:

User_Request relop Queue/Host/... -Property

If the result of the comparison is false, the user's job cannot be run in the queue or on
the host. For example, let the queue q1 be configured with a soft CPU time limit of 100
seconds. Let the queue q2 be configured to provide 1000 seconds soft CPU time limit.

The columns consumable and default affect how the administrator declares
consumable resources. See Oracle Grid Engine Administration Guide for consumable
resources.

The user requests consumables just like any other attribute. The Grid Engine system
internal bookkeeping for the resources is different, however.

Assume that a user submits the following request:

% qsub -l s_cpu=0:5:0 nastran.sh

The s_cpu=0:5:0 request asks for a queue that grants at least 5 minutes of soft limit
CPU time. Therefore, only queues providing at least 5 minutes soft CPU runtime limit
are set up properly to run the job.

For boolean complex values, and for complexes of type STRING and CSTRING, the
value TRUE is the default and will be used if no explicit value is specified. For
integer-based complex values, the value 1 is the default and will be used if no explicit
value is specified.

How to Display Requestable Attributes With QMON
1. Click the Job Control button in the QMON Main Control window. The Job Control

dialog box appears.

2. Select a pending job and click the Submit button. The Submit Job dialog box
appears.

3. Click the Request Resources button. The Requested Resources dialog box displays
the currently requestable attributes under Available Resources, which is shown in
the following figure.

Note: The Grid Engine software considers workload information in
the scheduling process only if more than one queue or host can run a
job.

Submitting Batch Jobs

Using Grid Engine 2-15

Figure 2–1 Request Resources Window

2.6 Submitting Batch Jobs
The following sections describe how to submit more complex jobs through the Grid
Engine system.

For information about submitting simple jobs, see Submitting Jobs.

2.6.1 About Shell Scripts
Shell scripts, also called batch jobs, are a sequence of command-line instructions that
are assembled in a file. Each instruction is interpreted as if the instruction were typed
manually by the user who is running the script. You can invoke arbitrary commands,
applications, and other shell scripts from within a shell script.

Script files are made executable by the chmod command. If scripts are invoked, a
command interpreter is started. csh, tcsh, sh, or ksh are typical command
interpreters.

The command interpreter can be invoked as login shell. To do so, the name of the
command interpreter must be contained in the login_shells list of the Grid Engine
system configuration that is in effect for the particular host and queue that is running
the job.

Note: The Grid Engine system configuration might be different for
the various hosts and queues configured in your cluster. You can
display the effective configurations with the -sconf and -sq
options of the qconf command.

Submitting Batch Jobs

2-16 Oracle Grid Engine User Guide

If the command interpreter is invoked as login shell, your job environment is the same
as if you logged in and ran the script. In using csh, for example, .login and .cshrc
are executed in addition to the system default startup resource files, such as
/etc/login, whereas only .cshrc is executed if csh is not invoked as
login-shell. For a description of the difference between being invoked and not
being invoked as login-shell, see the man page for your command interpreter.

Example of a Shell Script
The following example is a simple shell script that compiles the application flow from
its Fortran77 source and then runs the application:

#!/bin/csh
This is a sample script file for compiling and
running a sample FORTRAN program under N1 Grid Engine 6
cd TEST
Now we need to compile the program "flow.f" and
name the executable "flow".
f77 flow.f -o flow

Your local system user's guide provides detailed information about building and
customizing shell scripts. You might also want to look at the sh, ksh, csh, or tcsh
man pages. The following sections emphasize special things that you should consider
when you prepare batch scripts for the Grid Engine system.

In general, you can submit all shell scripts to the Grid Engine system that you can run
from your command prompt by hand. These shell scripts must not require a terminal
connection or need interactive user intervention. The exceptions are the standard error
and standard output devices, which are automatically redirected.

2.6.2 Extensions to Regular Shell Scripts
Some extensions to regular shell scripts influence the behavior of scripts that run
under Grid Engine system control. The following sections describe these extensions.

2.6.2.1 How a Command Interpreter is Selected
At submit time, you can specify the command interpreter to use for the job script file
as shown in Figure 2–8. However, if nothing is specified, the configuration variable
shell_start_mode determines how the command interpreter is selected:

■ If shell_start_mode is set to unix_behavior, the first line of the script file
specifies the command interpreter. The first line of the script file must begin with a
pound symbol (#) followed by an exclamation point (!). If the first line does not
begin with those characters, the Bourne Shell sh is used by default.

■ For all other settings of shell_start_mode, the default command interpreter is
determined by the shell parameter for the queue where the job starts. See
Displaying Queue Properties.

2.6.2.2 Output Redirection
Since batch jobs do not have a terminal connection, their standard output and their
standard error output must be redirected into files. The Grid Engine system enables
the user to define the location of the files to which the output is redirected. Defaults
are used if no output files are specified.

The standard location for the files is in the current working directory where the jobs
run. The default standard output file name is job-name.ojob-id. The default
standard error output is redirected to job-name>.ejob-id. The job_name can be

Submitting Batch Jobs

Using Grid Engine 2-17

built from the script file name, or defined by the user. job-id is a unique identifier
that is assigned to the job by the Grid Engine system.

For array job tasks, the task identifier is added to these filenames, separated by a dot.
The resulting standard redirection paths are job-name.ojob-id.task-id> and
job-name.ejob-id.task-id. For more information, see Submitting Array Jobs.

If the standard locations are not suitable, you can use one of the following to specify
output directions:

■ QMON as shown in Figure 2–9

■ -e and -o options to the qsub command

Standard output and standard error output can be merged into one file. The
redirections can be specified on a per execution host basis, in which case, the location
of the output redirection file depends on the host on which the job is executed. To
build custom but unique redirection file paths, use dummy environment variables
together with the qsub -e and -o options. A list of these variables follows:

■ HOME - Home directory on execution machine

■ USER - User ID of job owner

■ JOB_ID - Current job ID

■ JOB_NAME - Current job name; see the -N option

■ HOSTNAME - Name of the execution host

■ TASK_ID - Array job task index number

When the job runs, these variables are expanded into the actual values, and the
redirection path is built with these values.

2.6.2.3 Active Comments
Lines with a leading # sign are treated as comments in shell scripts. The Grid Engine
system also recognizes special comment lines that supply options to commands or to
the QMON interface. By default, these special comment lines are identified by the #$
prefix string. You can redefine the prefix string with the qsub -C command.

This use of special comments is referred to as "script embedding of submit
arguments." The following example shows a script file that uses script-embedded
command-line options to supply arguments to the qsub command. These options also
apply to the QMON Submit Job dialog box. The corresponding parameters are preset
when a script file is selected.

Example - Using Script-Embedded Command Line Options
#!/bin/csh

#Force csh if not Grid Engine default
#shell

#$ -S /bin/csh

Note: The qsub job can be run in a pseudo terminal using the -pty
yes option. If no pseudo terminal is available, the job fails. By default,
qsub starts a job without a pseudo terminal. The -pty no option will
force qsub to run without a pseudo terminal.

Submitting Batch Jobs

2-18 Oracle Grid Engine User Guide

This is a sample script file for compiling and
running a sample FORTRAN program under N1 Grid Engine 6
We want Grid Engine to send mail
when the job begins
and when it ends.

#$ -M EmailAddress
#$ -m b e

We want to name the file for the standard output
and standard error.

#$ -o flow.out -j y

Change to the directory where the files are located.

cd TEST

Now we need to compile the program "flow.f" and
name the executable "flow".

f77 flow.f -o flow

Once it is compiled, we can run the program.

flow

2.6.2.4 Environment Variables

When a job runs, the following variables are preset into the job's environment:

■ ARC - The architecture name of the node on which the job is running. The name is
compiled into the sge_execd binary.

■ $SGE_ROOT - The root directory of the Grid Engine system as set for sge_execd
before startup, or the default /usr/SGE directory.

■ SGE_BINARY_PATH - The directory in which the Grid Engine system binaries are
installed.

■ $SGE_CELL - The cell in which the job runs.

■ SGE_JOB_SPOOL_DIR - The directory used by sge_shepherd to store
job-related data while the job runs.

■ SGE_O_HOME - The path to the home directory of the job owner on the host from
which the job was submitted.

■ SGE_O_HOST - The host from which the job was submitted.

■ SGE_O_LOGNAME - The login name of the job owner on the host from which the
job was submitted.

■ SGE_O_MAIL - The content of the MAIL environment variable in the context of the
job submission command.

Note: If you would to change the predefined values of these
variables, use the -V or -v options with qsub or qalter.

Submitting Batch Jobs

Using Grid Engine 2-19

■ SGE_O_PATH - The content of the PATH environment variable in the context of
the job submission command.

■ SGE_O_SHELL - The content of the SHELL environment variable in the context of
the job submission command.

■ SGE_O_TZ - The content of the TZ environment variable in the context of the job
submission command.

■ SGE_O_WORKDIR - The working directory of the job submission command.

■ SGE_CKPT_ENV - The checkpointing environment under which a checkpointing
job runs. The checkpointing environment is selected with the qsub -ckpt
command.

■ SGE_CKPT_DIR - The path ckpt_dir of the checkpoint interface. Set only for
checkpointing jobs.

■ SGE_STDERR_PATH - The path name of the file to which the standard error stream
of the job is diverted. This file is commonly used for enhancing the output with
error messages from prolog, epilog, parallel environment start and stop scripts, or
checkpointing scripts.

■ SGE_STDOUT_PATH - The path name of the file to which the standard output
stream of the job is diverted. This file is commonly used for enhancing the output
with messages from prolog, epilog, parallel environment start and stop scripts, or
checkpointing scripts.

■ SGE_TASK_ID - The unique index number for an array job task. You can use the
SGE_TASK_ID to reference various input data records. This environment variable
is set to undefined for non-array jobs. It is possible to change the predefined value
of this variable with the -v or -V submit option.

■ SGE_TASK_FIRST - The index number of the first array job task. For more
information, see the -t option for qsub. It is possible to change the predefined
value of this variable with the -v or -V submit option.

■ SGE_TASK_LAST - The index number of the last array job task. For more
information, see the -t option for qsub. It is possible to change the predefined
value of this variable with the -v or -V submit option.

■ SGE_TASK_STEPSIZE - The step size of the array job specification. For more
information, see the -t option for qsub. It is possible to change the predefined
value of this variable with the -v or -V submit option.

■ ENVIRONMENT - Always set to BATCH. This variable indicates that the script is
run in batch mode.

■ HOME - The user's home directory path as taken from the passwd file.

■ HOSTNAME - The host name of the node on which the job is running.

■ JOB_ID - A unique identifier assigned by the sge_qmaster daemon when the
job was submitted. The job ID is a decimal integer from 1 through 9,999,999.

■ JOB_NAME - The job name, which is built from the file name provided with the
qsub command, a period, and the digits of the job ID. You can override this
default with qsub -N.

■ LOGNAME - The user's login name as taken from the passwd file.

■ NHOSTS-- The number of hosts in use by a parallel job.

■ NQUEUES - The number of queues that are allocated for the job. This number is
always 1 for serial jobs.

Submitting Array Jobs

2-20 Oracle Grid Engine User Guide

■ NSLOTS - The number of queue slots in use by a parallel job.

■ PATH - A default shell search path of:
/usr/local/bin:/usr/ucb:/bin:/usr/bin.

■ PE - The parallel environment under which the job runs. This variable is for
parallel jobs only.

■ PE_HOSTFILE - The path of a file that contains the definition of the virtual
parallel machine that is assigned to a parallel job by the Grid Engine system. This
variable is used for parallel jobs only. See the description of the $pe_hostfile
parameter in sge_pe for details on the format of this file.

■ QUEUE - The name of the queue in which the job is running.

■ REQUEST - The request name of the job. The name is either the job script file name
or is explicitly assigned to the job by the qsub -N command.

■ RESTARTED - Indicates whether a checkpointing job was restarted. If set to value
1, the job was interrupted at least once. The job is therefore restarted.

■ SHELL - The user's login shell as taken from the passwd file.

■ TMPDIR - The absolute path to the job's temporary working directory.

■ TMP - The same as TMPDIR. This variable is provided for compatibility with NQS.

■ TZ - The time zone variable imported from sge_execd, if set.

■ USER - The user's login name as taken from the passwd file.

2.7 Submitting Array Jobs
Parameterized and repeated execution of the same set of operations that are contained
in a job script is an ideal application for the array job facility of the Grid Engine
system. Typical examples of such applications are found in the Digital Content
Creation industries for tasks such as rendering. Computation of an animation is split
into frames. The same rendering computation can be performed for each frame
independently.

The Grid Engine system provides an efficient implementation of array jobs, handling
the computations as an array of independent tasks joined into a single job. The tasks of
an array job are referenced through an array index number. The indexes for all tasks
span an index range for the entire array job. The index range is defined during
submission of the array job by a single qsub command.

You can monitor and control an array job. For example, you can suspend, resume, or
cancel an array job as a whole or by individual task or subset of tasks. To reference the
tasks, the corresponding index numbers are suffixed to the job ID. Tasks are executed
very much like regular jobs. Tasks can use the environment variable SGE_TASK_ID to
retrieve its own task index number and to access input data sets designated for this
task identifier.

2.7.1 How to Configure Array Task Dependencies From the Command Line
While most interdependent tasks can be supported by Grid Engine's job dependency
facility, certain array jobs require the flexibility provided by the array task dependency
facility. The array task dependency facility allows users to make one array job's tasks

Note: SHELL is not necessarily the shell that is used for the job.

Submitting Array Jobs

Using Grid Engine 2-21

dependent on the tasks of another array job. For example, if you use Grid Engine to
render video effects, the array task dependency allows you to submit each step as an
array job where each task represents a frame. Each task then depends on the
corresponding task in the previous step.

To configure an array task dependency, use the following command:

qsub -hold_jid_ad wc_job_list

The -hold_jid_ad option defines or redefines the job array dependency list of the
submitted job. A reference by job name or pattern is only accepted if the referenced job
is owned by the same user as the referring job. Each sub-task of the submitted job is
not eligible for execution unless the corresponding sub-tasks of all jobs referenced in
the comma-separated job id and/or job name list have completed.

The wc_job_list type is detailed in sge_types(1).

Examples - Using Array Task Dependencies to Chunk Tasks
When using 3D rendering applications, it is often more efficient to render several
frames at once on the same CPU instead of distributing the frames across several
machines. The generation of several frames at once we will refer to as chunking.

The following examples illustrate chunking:

■ Array task B is dependent on array task A, which has a step size of 2:

$ qsub -t 1-6:2 A
$ qsub -hold_jid_ad A -t 1-6 B

In the results shown below, it is assumed that array task A is chunking, which
means that B.1 and B.2 are dependent on A.1, B.3 and B.4 are dependent on
A.3, and so on. If job A.1 didn't render frame 2, then job B.2 would fail:

A.1	-->	B.1
	-->	B.2
A.3	-->	B.3
	-->	B.4
A.5	-->	B.5
	-->	B.6

■ Array task B is dependent on array task A, which has a step size of 1:

$ qsub -t 1-6 A
$ qsub -hold_jid_ad A -t 1-6:2 B

In this example shown below, array task B is chunking, which means that job B.1
is dependent on job A.1 and job A.2, job B.3 is dependent on job A.3 and job
A.4, and so on. It is reasonable to always assume that array task B is chunking
because otherwise A.2, A.4, and A.6 would be needlessly run and the result
would never be used:

A.1	-->	B.1
A.2	-->	
A.3	-->	B.3
A.4	-->	

Note: When using the task dependency facility, the array task must
have the same range of sub-tasks as its dependent array task,
otherwise the job will be rejected at submit time.

Submitting Array Jobs

2-22 Oracle Grid Engine User Guide

| A.5 | --> | B.5 |
| A.6 | --> | |

■ Array task A has a step size of 3 and array task B has a step size of 2. The tasks are
dependent on each other:

$ qsub -t 1-6:3 A
$ qsub -hold_jid_ad A -t 1-6:2 B

In this example shown below, both array task A and array task B are chunking. So,
job B.1 is dependent on job A.1, job B.3 is dependent on job A.1 and job A.4,
and job B.5 is dependent on job A.4. When the hold array dependency option
-hold_jid_ad is specified and the step sizes of the array job and the dependent
array job are different, we always assume that both are chunking:

A.1	-->	B.1
	-->	
	-->	B.3
A.4	-->	
	-->	B.5
	-->	

Examples - Using Job Dependencies Versus Array Task Dependencies to
Complete Array Jobs
The following example illustrates the difference between the job dependency facility
and the task array dependency facility:

■ In the following example, array task B is dependent on array task A:

$ qsub -t 1-3 A
$ qsub -hold_jid A -t 1-3 B

All the sub-tasks in job B will wait for all sub-tasks 1, 2 and 3 in A to finish before
starting the tasks in job B. The tasks will be executed in the following approximate
order: A.1, A.2, A.3, B.1, B.2, B.3, as shown below:

A.1		B.1
A.2	-->	B.2
A.3		B.3

■ In the following example, each sub-task in array job B is dependent on each
corresponding sub-task in job A in a one-to-one mapping:

$ qsub -t 1-3 A
$ qsub -hold_jid_ad A -t 1-3 B

Sub-task B.1 will only start when A.1 completes. B.2 will only start once A.2
completes, etc. On a single machine renderfarm, the tasks thus could be executed
in the following approximate order: A.1, B.1, A.2, B.2, A.3, B.3, as shown
below:

A.1	-->	B.1
A.2	-->	B.2
A.3	-->	B.3

It should only be able to specify the option if we are submitting an array job, it is
dependent on another array job, and that array job has the same number of
sub-tasks.

Submitting Interactive Jobs

Using Grid Engine 2-23

2.7.2 How to Submit an Array Job From the Command Line
To submit an array job from the command line, type the following command:

qsub -t <n[-m[:s]]> <job.sh>

The -t option defines the task index range. The n[-m[:s]] argument indicates the
following:

■ The lowest index number (n)

■ The highest index number (m)

■ The step size (s)

The range may be a single number (n), a simple range (n-m), or a range with a step
size (n-m:s).

Example - Array Job
The following is an example of how to submit an array job:

% qsub -l h_cpu=0:45:0 -t 2-10:2 render.sh data.in

Each task requests a hard CPU time limit of 45 minutes with the -l option. The -t
option defines the task index range. In this case, 2-10:2 specifies that 2 is the lowest
index number, and 10 is the highest index number. Only every second index, the :2
part of the specification, is used. Thus, the array job is made up of 5 tasks with the task
indices 2, 4, 6, 8, and 10. Each task executes the job script render.sh once the task is
dispatched and started by the Grid Engine system. Tasks can use SGE_TASK_ID to
find their index number, which they can use to find their input data record in the data
file data.in.

2.7.3 How to Submit an Array Job With QMON
To submit an array job, follow the instructions in How to Submit a Simple Job With
QMON, additionally taking into account the following information.

The only difference is that the Job Tasks input window that is shown in Figure 2–8
must contain the task range specification. The task range specification uses syntax that
is identical to the qsub -t command.

For information about monitoring and controlling jobs in general, and about array jobs
in particular, see Monitoring and Controlling Jobs.

2.8 Submitting Interactive Jobs
The submission of interactive jobs instead of batch jobs is useful in situations where a
job requires your direct input to influence the job results. Such situations are typical
for X Windows applications or for tasks in which your interpretation of immediate
results is required to steer further processing.

You can create interactive jobs in three ways:

■ qlogin - An rlogin-like session that is started on a host selected by the Grid
Engine software.

Note: Array tasks cannot have interdependencies with other jobs or
with other array tasks.

Submitting Interactive Jobs

2-24 Oracle Grid Engine User Guide

■ qrsh - The equivalent of the standard UNIX rsh facility. A command is run
remotely on a host selected by the Grid Engine system. If no command is
specified, a remote rlogin session is started on a remote host.

■ qsh - An xterm that is displayed from the machine that is running the job. The
display is set corresponding to your specification or to the setting of the DISPLAY
environment variable. If the DISPLAY variable is not set, and if no display
destination is defined, the Grid Engine system directs the xterm to the 0.0 screen
of the X server on the host from which the job was submitted.

The default handling of interactive jobs differs from the handling of batch jobs.
Interactive jobs are not queued if the jobs cannot be executed when they are submitted.
When a job is not queued immediately, the user is notified that the cluster is currently
too busy.

You can change this default behavior with the -now no option to qsh, qlogin, and
qrsh. If you use this option, interactive jobs are queued like batch jobs. When you use
the -now yes option, batch jobs that are submitted with qsub can also be handled
like interactive jobs. Such batch jobs are either dispatched for running immediately, or
they are rejected.

The following sections describe how to use the qlogin and qsh facilities. The qrsh
command is explained in a broader context in Transparent Remote Execution.

2.8.1 How to Submit Interactive Jobs From the Command Line

2.8.1.1 Using qrsh to Submit Interactive Jobs
qrsh supports most of the qsub options. If no options are given, qrsh will open an
rlogin-like session.

To submit an interactive job with the qrsh command, type a command like the
following:

qrsh -pty y vi

Note: Contact your system administrator to find out if your cluster is
prepared for interactive job execution. To function correctly, all the
facilities need proper configuration of cluster parameters of the Grid
Engine system. The correct xterm execution paths must be defined
for qsh. Interactive queues must be available for this type of job.

Note: Interactive jobs can be run only in queues of the type
INTERACTIVE. See Oracle Grid Engine Administration Guide for
configuring queues details.

Note: The output for an interactive job cannot be redirected with the
-j y|n, -o, and -e options. However, since the output for a
prolog and epilog script is sent to the default stdout and stderr
files, you can use the -j y|n, -o, and -e options to redirect this
output to different files.

Submitting Interactive Jobs

Using Grid Engine 2-25

This command starts a vi editor on any available system in the Grid Engine cluster.
The -pty y option starts a job in a pseudo-terminal session. The pseudo-terminal
allows full cursor control from within the vi session.

The CTRL-Z behavior of qrsh <jobname> is since version 6.2u7 controllable with
the parameter:

qrsh -suspend_remote y[es]| n[o] <your_program>

When your desired behavior is that you want to suspend qrsh and the submitted job,
when you press CTRL-Z, then you have to submit the job like the following:

qrsh -suspend_remote yes <your_program>

If you just want to suspend qrsh and let the remote program in running state, then
you have to use:

qrsh -suspend_remote no <your_program>

2.8.1.2 Using qsh to Submit Interactive Jobs
qsh is very similar to qsub. qsh supports several of the qsub options, as well as the
additional option -display to direct the display of the xterm to be invoked.

To submit an interactive job with the qsh command, type a command like the
following:

% qsh -l arch=solaris64

This command starts an xterm on any available Sun Solaris 64-bit operating system
host.

2.8.1.3 Using qlogin to Submit Interactive Jobs
Use the qlogin command from any terminal window to start an interactive session
under the control of the Grid Engine system.

To submit an interactive job with the qlogin command, type a command like the
following:

% qlogin -l star-cd=1,h_cpu=6:0:0

This command locates a low-loaded host. The host has a Star-CD license available. The
host also has at least one queue that can provide a minimum of six hours hard CPU
time limit.

Note: If you have submitted a job in one way but during run time
you want to have the opposite behavior than specified, you can press
the % key and afterwords the CTRL-Z key.

Note: Depending on the remote login facility that is configured to be
used by the Grid Engine system, you might have to provide your user
name, your password, or both, at a login prompt.

Submitting Interactive Jobs

2-26 Oracle Grid Engine User Guide

2.8.2 How to Submit Interactive Jobs With QMON

1. Click the Job Control button in the QMON Main Control window. The Job Control
dialog box appears.

2. Select the Submit Jobs button.

3. Verify that the top button on the right side of the dialog box says "Interactive". If
not, click the button to change from Batch to Interactive. This prepares the Submit
Job dialog box to submit interactive jobs. The meaning and the use of the selection
options in the dialog box is almost the same as that described for batch jobs in
Submitting Batch Jobs. The difference is that several input fields are grayed out
because those fields do not apply to interactive jobs. The following figures show
the general and advanced variations of the Interactive Submit Job dialog box.

Figure 2–2 General Options for Job Submission

Note: The only type of interactive jobs that you can submit from
QMON are jobs that bring up an xterm on a host selected by the
Grid Engine system.

Transparent Remote Execution

Using Grid Engine 2-27

Figure 2–3 Advanced Options for Job Submission

2.9 Transparent Remote Execution
The Grid Engine system provides a set of closely related facilities that support the
transparent remote execution of certain computational tasks. The core tool for this
functionality is the qrsh command, which is described in Remote Execution With
qrsh. Two high-level facilities, qtcsh and qmake, build on top of qrsh. These two
commands enable the Grid Engine system to transparently distribute implicit
computational tasks, thereby enhancing the standard UNIX facilities make and csh.

2.9.1 Remote Execution With qrsh
qrsh is the major enabling infrastructure for the implementation of the qtcsh and the
qmake facilities. qrsh is also used for the tight integration of the Grid Engine system
with parallel environments such as MPI or PVM.

You can use qrsh for various purposes, including the following:

■ To provide remote execution of interactive applications that use the Grid Engine
system. This is comparable to the standard UNIX facility rsh, which is also called
remsh on HP-UX systems.

■ To offer interactive login session capabilities that use the Grid Engine system. By
default, qlogin is similar to the standard UNIX facility rlogin but it can also be
configured to use the UNIX telnet facility or any similar remote login facility.

■ To allow for the submission of batch jobs that support terminal I/O (standard
output, standard error, and standard input) and terminal control.

■ To provide a way to submit a standalone program that is not embedded in a shell
script.

Note: You can also submit scripts with qrsh by using the -b n
option.

Transparent Remote Execution

2-28 Oracle Grid Engine User Guide

■ To provide a submission client that remains active while a batch job is pending or
running and that goes away only if the job finishes or is cancelled.

■ To allow for the Grid Engine system-controlled remote running of job tasks within
the framework of the dispersed resources allocated by parallel jobs. See Oracle Grid
Engine Administration Guide for more information about tight integration of
parallel environments and Oracle Grid Engine software.

2.9.1.1 Invoking Transparent Remote Execution With qrsh
Type the qrsh command, adding options and arguments according to the following
syntax:

% qrsh [<options>] <program>|<shell-script> [<arguments>] \
 [> stdout] [>&2 stderr] [< stdin]

qrsh understands almost all options of qsub. qrsh provides the following options:

■ -now yes|no - now yes specifies that the job is scheduled immediately. The job
is rejected if no appropriate resources are available. -now yes is the default.
-now no specifies that the job is queued like a batch job if the job cannot be
started at submission time.

■ -inherit - qrsh does not go through the scheduling process to start a job-task.
Instead, qrsh assumes that the job is embedded in a parallel job that already has
allocated suitable resources on the designated remote execution host. This form of
qrsh is commonly used in qmake and in a tight parallel environment integration.
The default is not to inherit external job resources.

■ -binary yes|no - When specified with the n option, enables you to use qrsh to
submit script jobs.

■ -noshell - With this option, you do not start the command line that is given to
qrsh in a user's login shell. Instead, you execute the command without the
wrapping shell. Use this option to speed up execution.

■ -nostdin - Suppresses the input stream STDIN. With this option set, qrsh
passes the -n option to the rsh command. Suppression of the input stream is
especially useful if multiple tasks are executed in parallel using qrsh, for example,
in a make process. It is undefined which process gets the input.

■ -pty yes|no - Available for qrsh, qlogin, and qsub only, -pty yes starts the
job in a pseudo terminal (pty). If no pty is available, the job fails to start. -pty
no starts the job without a pseudo terminal. By default, qrsh without a command
and qlogin start the job in a pty, qrsh with a command starts the job without a
pty. If a job is running in a pty, you can suspend the client by entering CTRL-Z.
CTRL-Z will only suspend the remote job started within the IJS session.

■ -verbose - This option presents output on the scheduling process. Verbose is
mainly intended for debugging purposes and is switched off by default.

2.9.2 Transparent Job Distribution With qtcsh
qtcsh is a fully compatible replacement for the widely known and used UNIX C shell
derivative tcsh. qtcsh is built around tcsh. See the information that is provided in
$SGE_ROOT/3rd_party for details on the involvement of tcsh.

qtcsh provides a command shell with the extension of transparently distributing
execution of designated applications to suitable and lightly loaded hosts that use the
Grid Engine system. The .qtask configuration files define the applications to execute
remotely and the requirements that apply to the selection of an execution host.

Transparent Remote Execution

Using Grid Engine 2-29

These applications are transparent to the user and are submitted to the Grid Engine
system through the qrsh facility. qrsh provides standard output, error output, and
standard input handling as well as terminal control connection to the remotely
executing application.

Three noticeable differences between running such an application remotely and
running the application on the same host as the shell are:

■ The remote host might be more powerful, lower-loaded, and have required
hardware and software resources installed.

■ A small delay is incurred by the remote startup of the jobs and by their handling
through the Grid Engine system.

■ Administrators can restrict the use of resources through interactive jobs (qrsh)
and thus through qtcsh. If not enough suitable resources are available for an
application to be started through qrsh, or if all suitable systems are overloaded,
the implicit qrsh submission fails. A corresponding error message is returned,
such as Not enough resources ... try later.

In addition to the standard use, qtcsh is a suitable platform for third-party code and
tool integration. The single-application execution form of qtcsh is qtcsh -c
app-name. The use of this form of qtcsh inside integration environments presents a
persistent interface that almost never needs to be changed. All the required
application, tool, integration, site, and even user-specific configurations are contained
in appropriately defined .qtask files. A further advantage is that this interface can be
used in shell scripts, in C programs, and even in Java applications.

2.9.2.1 qtcsh Usage
The invocation of qtcsh is exactly the same as for tcsh. qtcsh extends tcsh by
providing support for the .qtask file and by offering a set of specialized shell built-in
modes.

The .qtask file is defined as follows. Each line in the file has the following format:

% [!]<app-name> <qrsh-options>

The optional leading exclamation mark (!) defines the precedence between conflicting
definitions in a global cluster .qtask file and the personal .qtask file of the qtcsh
user. If the exclamation mark is missing in the global cluster file, a conflicting
definition in the user file overrides the definition in the global cluster file. If the
exclamation mark is in the global cluster file, the corresponding definition cannot be
overridden.

app-name specifies the name of the application that is submitted to the Grid Engine
system for remote execution. The application name must appear in the command line
exactly as the application is defined in the .qtask file. If the application name is
prefixed with a path name, a local binary is addressed. No remote execution is
intended.

qrsh-options specifies the options to the qrsh facility to use. These options define
resource requirements for the application.

csh aliases are expanded before a comparison with the application names is
performed. The applications intended for remote execution can also appear anywhere
in a qtcsh command line, in particular before or after standard I/O redirections.

The following examples demonstrate the syntax:

.qtask file
netscape -v DISPLAY=myhost:0

Transparent Remote Execution

2-30 Oracle Grid Engine User Guide

grep -l h=filesurfer

Given this .qtask file, the following qtcsh command lines:

netscape
~/mybin/netscape
cat very_big_file | grep pattern | sort | uniq

Result in:

qrsh -v DISPLAY=myhost:0 netscape
~/mybin/netscape
cat very_big_file | qrsh -l h=filesurfer grep pattern | sort | uniq

qtcsh can operate in different modes, influenced by switches that can be set on or off:

■ Local or remote execution of commands. Remote is the default.

■ Immediate or batch remote execution. Immediate is the default.

■ Verbose or nonverbose output. Nonverbose is the default.

The setting of these modes can be changed using option arguments of qtcsh at start
time or with the shell built-in command qrshmode at runtime.

2.9.3 Parallel Makefile Processing With qmake
qmake is a replacement for the standard UNIX make facility. qmake extends make by
enabling the distribution of independent make steps across a cluster of suitable
machines. qmake is built around the popular GNU-make facility gmake. See the
information that is provided in $SGE_ROOT/3rd_party for details on the
involvement of gmake.

To ensure that a distributed make process can run to completion, qmake does the
following:

1. Allocates the required resources in a way analogous to a parallel job.

2. Manages this set of resources without further interaction with the scheduling.

3. Distributes make steps as resources become available, using the qrsh facility with
the -inherit option.

qrsh provides standard output, error output, and standard input handling as well as
terminal control connection to the remotely executing make step. There are only three
noticeable differences exist between executing a make procedure locally and using
qmake:

■ The parallelization of the make process will speed up significantly, provided that
individual make steps have a certain duration and that enough independent make
steps exist to process.

■ In the make steps to be started up remotely, an implied small overhead exists that
is caused by qrsh and the remote execution.

■ To take advantage of the make step distribution of qmake, the user must specify as
a minimum the degree of parallelization. That is, the user must specify the number
of concurrently executable make steps. In addition, the user can specify the
resource characteristics required by the make steps, such as available software
licenses, machine architecture, memory, or CPU-time requirements.

The most common use of make is the compilation of complex software packages.
However, compilation might not be the major application for qmake. Program files are
often quite small as a matter of good programming practice. Therefore, compilation of

Transparent Remote Execution

Using Grid Engine 2-31

a single program file, which is a single make step, often takes only a few seconds.
Furthermore, compilation usually implies significant file access. Nested include files
can cause this problem. File access might not be accelerated if done for multiple make
steps in parallel because the file server can become a bottleneck. Such a bottleneck
effectively serializes all the file access. Therefore, the compilation process sometimes
cannot be accelerated in a satisfactory manner.

Other potential applications of qmake are more appropriate. An example is the
steering of the interdependencies and the workflow of complex analysis tasks through
makefiles. Each make step in such environments is typically a simulation or data
analysis operation with nonnegligible resource and computation time requirements. A
considerable acceleration can be achieved in such cases.

2.9.3.1 qmake Usage
The command-line syntax of qmake looks similar to the syntax of qrsh:

% qmake [-pe <pe-name pe-range>][<options>] \
 -- [<gnu-make-options>][<target>]

Pay special attention to the use of the -pe option and its relation to the gmake -j
option. You can use both options to express the amount of parallelism to be achieved.
The difference is that gmake provides no possibility with -j to specify something like
a parallel environment to use. Therefore, qmake assumes that a default environment
for parallel makes is configured that is called make. Furthermore, gmake's -j allows
for no specification of a range, but only for a single number. qmake interprets the
number that is given with -j as a range of 1n. By contrast, -pe permits the detailed
specification of all these parameters. Consequently the following command line
examples are identical:

% qmake -- -j 10
% qmake -pe make 1-10 --

The following command lines cannot be expressed using the -j option:

% qmake -pe make 5-10,16 --
% qmake -pe mpi 1-99999 --

Apart from the syntax, qmake supports two modes of invocation: interactively from
the command line without the -inherit option, or within a batch job with the
-inherit option. These two modes start different sequences of actions:

■ Interactive - When qmake is invoked on the command line, the make process is
implicitly submitted to the Grid Engine system with qrsh. The process is as
follows:

1. The resource requirements that are specified in the qmake command line are
taken into account.

2. The Grid Engine system selects a master machine for the execution of the
parallel job that is associated with the parallel make job.

3. The Grid Engine system starts the make procedure. The procedure must start
there because the make process can be architecture-dependent. The required
architecture is specified in the qmake command line.

Note: The -inherit option is also supported by qmake, as
described later in this section.

How to Submit a Simple Job From the Command Line

2-32 Oracle Grid Engine User Guide

4. The qmake process on the master machine delegates execution of individual
make steps to the other hosts that are allocated for the job. The steps are
passed to qmake through the parallel environment hosts file.

■ Batch - In this case, qmake appears inside a batch script with the -inherit
option. If the -inherit option is not present, a new job is spawned, as described
in the first case earlier. This results in qmake making use of the resources already
allocated to the job into which qmake is embedded. qmake uses qrsh -inherit
directly to start make steps. When calling qmake in batch mode, the specification
of resource requirements, the -pe option and the -j option are ignored.

If no parallel execution is required, call qmake with gmake command-line syntax
without Grid Engine system options and without --. This qmake command behaves
like gmake.

2.10 How to Submit a Simple Job From the Command Line

 Before You Begin

Before you run any Grid Engine system command, you must first set your executable
search path and other environment conditions properly.

Steps
1. From the command line, type one of the following commands:

■ If you are using csh or tcsh as your command interpreter, type the
following:

% source $SGE_ROOT/$SGE_CELL/common/settings.csh

$SGE_ROOT specifies the location of the root directory of the Grid Engine
system. This directory was specified at the beginning of the installation
procedure.

■ If you are using sh, ksh, or bash as your command interpreter, type the
following:

. $SGE_ROOT/$SGE_CELL/common/settings.sh

Note: Single CPU jobs also must request a parallel environment:

qmake -pe make 1 --

Note: If you installed the Grid Engine software under an
unprivileged user account, you must log in as that user to be able to
run jobs. See Oracle Grid Engine Installation and Upgrade Guide for
information about installation accounts.

Note: You can add these commands to your .login, .cshrc, or
.profile files, whichever is appropriate. By adding these
commands, you guarantee proper settings for all interactive session
you start later.

How to Submit a Simple Job From the Command Line

Using Grid Engine 2-33

2. Submit a simple job script to your cluster by typing the following command:

% qsub simple.sh

The command assumes that simple.sh is the name of the script file, and that the
file is located in your current working directory. You can find the following job in
the file $SGE_ROOT/examples/jobs/simple.sh.

#!/bin/sh
#
#
(c) 2004 Sun Microsystems, Inc. Use is subject to license terms.

This is a simple example of a Grid Engine batch script

request Bourne shell as shell for job
#$ -S /bin/sh

#
print date and time
date
Sleep for 20 seconds
sleep 20
print date and time again
date

If the job submits successfully, the qsub command responds with a message
similar to the following example:

your job 1 ('simple.sh') has been submitted

3. Type the following command to retrieve status information about your job.

% qstat

You should receive a status report that provides information about all jobs
currently known to the Grid Engine system. For each job, the status report lists the
following items:

■ Job ID, which is the unique number that is included in the submit
confirmation

■ Name of the job script

■ Owner of the job

■ State indicator; for example, r means running

■ Submit or start time

■ Name of the queue in which the job runs

If qstat produces no output, no jobs are actually known to the system. For example,
your job might already have finished.

You can control the output of the finished jobs by checking their stdout and stderr
redirection files. By default, these files are generated in the job owner's home directory
on the host that ran the job. The names of the files are composed of the job script file
name with a .o extension for the stdout file and a .e extension for the stderr file,
followed by the unique job ID. The stdout and stderr files of your job can be found
under the names simple.sh.o1 and simple.sh.e1 respectively. These names are
used if your job was the first ever executed in a newly installed Grid Engine system.

How to Submit a Simple Job With QMON

2-34 Oracle Grid Engine User Guide

2.11 How to Submit a Simple Job With QMON

Before You Begin

A more convenient way to submit and control jobs and of getting an overview of the
Grid Engine system is the graphical user interface QMON. Among other facilities,
QMON provides a job submission dialog box and a Job Control dialog box for the
tasks of submitting and monitoring jobs.

Steps
1. Type the following command to launch QMON:

% qmon

During startup, a message window appears, and then the QMON Main Control
window appears.

2. Click the Job Control button, and then click the Submit Jobs button, as shown
below.

Figure 2–4 QMON Main Control

The Job Control and Submit Job dialog boxes.

3. In the Submit Job dialog box, click the icon at the right of the Job Script field. The
Select a File dialog box appears.

Note: If you installed the Grid Engine software under an
unprivileged user account, you must log in as that user to be able to
run jobs. See Oracle Grid Engine Installation and Upgrade Guide for
details about installation accounts.

Tip: The button names, such as Job Control, are displayed when you
rest the mouse pointer over the buttons.

How to Submit a Simple Job With QMON

Using Grid Engine 2-35

Figure 2–5 Job Submission Window

Figure 2–6 Select Script Window

How to Submit an Extended Job From the Command Line

2-36 Oracle Grid Engine User Guide

4. Select your script file. For example, select the file simple.sh that was used in the
command line example.

5. Click OK to close the Select a File dialog box.

6. On the Submit Job dialog box, click Submit.

After a few seconds, you should be able to monitor your job on the Job Control
dialog box. First you see your job on the Pending Jobs tab. Once the job starts
running, the job quickly moves to the Running Jobs tab.

Figure 2–7 QMON Job Control Window

2.12 How to Submit an Extended Job From the Command Line
To submit the extended job request that is shown in Figure 2–8 from the command
line, type the following command:

% qsub -N Flow -p -111 -P devel -a 200404221630.44 -cwd \
 -S /bin/tcsh -o flow.out -j y flow.sh big.data

2.13 How to Submit an Extended Job With QMON
1. Click the Job Control button in the QMON Main Control window. The Job Control

dialog box appears.

2. Select a pending job and click the Submit button. The Submit Job dialog box
appears. See the example below. The General tab of the Submit Job dialog box
enables you to configure the following parameters for an extended job:

■ Prefix - A prefix string that is used for script-embedded submit options. See
Active Comments for details.

■ Job Script - The job script to use. Click the icon at the right of the Job Script
field to open a file selection box.

How to Submit an Extended Job With QMON

Using Grid Engine 2-37

■ Job Tasks - The task ID range for submitting array jobs. See Submitting Array
Jobs for details.

■ Job Name - The name of the job. A default is set after you select a job script.

■ Job Args - Arguments to the job script.

■ Priority - A counting box for setting the job's initial priority This priority ranks
a single user's jobs. Priority tells the scheduler how to choose among a single
user's jobs when several of that user's jobs are in the system simultaneously.

■ Job Share - Defines the share of the job's tickets relative to other jobs. The job
share influences only the share tree policy and the functional policy.

■ Start At - The time at which the job is considered eligible for execution. Click
the icon at the right of the Start At field to open a dialog box.

■ Project - The project to which the job is subordinated. Click the icon at the
right of the Project field to select among the available projects.

■ Current Working Directory - A flag that indicates whether to execute the job in
the current working directory. Use this flag only for identical directory
hierarchies between the submit host and the potential execution hosts.

■ Shell - The command interpreter to use to run the job script. See How a
Command Interpreter is Selected for details. Click the icon at the right of the
Shell field to open a dialog box. Enter the command interpreter specifications
of the job.

■ Merge Output - A flag indicating whether to merge the job's standard output
and standard error output together into the standard output stream.

■ stdout - The standard output redirection to use. See Output Redirection for
details. A default is used if nothing is specified. Click the icon at the right of
the stdout field to open a dialog box. Enter the output redirection alternatives.

■ stderr - The standard error output redirection to use, similar to the standard
output redirection.

■ stdin - The standard input file to use, similar to the standard output
redirection.

■ Request Resources - Click this button to define the resource requirement for
your job. If resources are requested for a job, the button changes color.

■ Restart depends on Queue - Click this button to define whether the job can be
restarted after being aborted by a system crash or similar events. This button
also controls whether the restart behavior depends on the queue or is
demanded by the job.

■ Notify Job - A flag that indicates whether the job is to be notified by SIGUSR1
or by SIGUSR2 signals if the job is about to be suspended or canceled.

■ Hold Job - A flag that indicates either a user hold or a job dependency is to be
assigned to the job. The job is not eligible for execution as long as any type of
hold is assigned to the job. See Monitoring and Controlling Jobs for more

Note: To enable users to set the priorities of their own jobs, the
administrator must enable priorities with the 4 parameter of the
scheduler configuration. For more information about managing
policies, see Oracle Grid Engine Administrator Guide.

How to Submit an Extended Job With QMON

2-38 Oracle Grid Engine User Guide

details. To restrict a hold, enter a specific range of tasks for an array job in the
Hold Job field. For more information, see Submitting Array Jobs.

■ Start Job Immediately - A flag that forces the job to be started immediately, if
possible, or to be rejected. Jobs are not queued if this flag is selected.

■ Job Reservation - A flag that specifies which resources should be reserved for
a job. See Oracle Grid Engine Administration Guide for resource reservation and
backfiling. The buttons at the right side of the Submit Job dialog box enable
you to start various actions:

■ Submit - Submit the currently specified job.

■ Edit - Edit the selected script file in an X terminal, using either vi or the editor
defined by the EDITOR environment variable.

■ Clear - Clear all settings in the Submit Job dialog box, including any specified
resource requests.

■ Reload - Reload the specified script file, parse any script-embedded options,
parse default settings, and discard intermediate manual changes to these
settings. For more information, see Active Comments and Default Request
Files. This action is the equivalent to a Clear action with subsequent
specifications of the previous script file. The option has an effect only if a
script file is already selected.

■ Save Settings - Save the current settings to a file. Use the file selection box to
select the file. The saved files can either be loaded later or be used as default
requests. For more information, Default Request Files.

■ Load Settings - Load settings previously saved with the Save Settings button.
The loaded settings overwrite the current settings.

■ Done - Closes the Submit Job dialog box.

Example - Extended Job Example
The following figure shows the Submit Job dialog box with most of the parameters set.

How to Submit an Advanced Job From the Command Line

Using Grid Engine 2-39

Figure 2–8 Extended Job Example

The parameters of the job configured in the example are:

■ The job has the script file flow.sh, which must reside in the working directory of
QMON.

■ The job is called Flow.

■ The script file takes the single argument big.data.

■ The job starts with priority 3.

■ The job is eligible for execution not before 4:30.44 AM of the 22th of April in the
year 2004.

■ The project definition means that the job is subordinated to project crash.

■ The job is executed in the submission working directory.

■ The job uses the tcsh command interpreter.

■ Standard output and standard error output are merged into the file flow.out,
which is created in the current working directory.

2.14 How to Submit an Advanced Job From the Command Line
To submit the advanced job request that is shown in Figure 2–9 from the command
line, type the following command:

% qsub -N Flow -p -111 -P devel -a 200012240000.00 -cwd \
 -S /bin/tcsh -o flow.out -j y -pe mpi 4-16 \
 -v SHARED_MEM=TRUE,MODEL_SIZE=LARGE \
 -ac JOB_STEP=preprocessing,PORT=1234 \
 -A FLOW -w w -m s,e -q big_q\
 -M me@myhost.com,me@other.address \
 flow.sh big.data

How to Submit an Advanced Job From the Command Line

2-40 Oracle Grid Engine User Guide

2.14.1 Specifying the Use of a Script or a Binary

You can use the -b n|y submit option to indicate explicitly whether the command
should be treated as a binary or a script:

■ To specify that the command should be treated as a binary or a script, use the -b y
option with the qrsh command.

■ To specify the command should be treated only as a script, use the -b n option
with the qsub command.

2.14.2 Default Request Files
The preceding command shows that advanced job requests can be complex, especially
if similar requests need to be submitted frequently. To avoid these problems, you can
embed qsub options in the script files, or use default request files. For more
information, see Active Comments.

The cluster administrator can set up a global default request file for all Grid Engine
system users. Users can define a private default request file located in their home
directories. In addition, users can create application specific default request files.

If more than one of these files are available, the files are merged into one default
request, with the following order of precedence:

1. Application-specific default request file

2. General private default request file

3. Global default request file

Default request files contain the qsub options to apply by default to the jobs in one or
more lines. The location of the global cluster default request file is $SGE_
ROOT/cell/common/sge_request. The private general default request file is
located under $HOME/.sge_request. The application-specific default request files
are located under $cwd/.sge_request.

Script embedding and the qsub command line have higher precedence than the
default request files. Therefore, script embedding overrides default request file
settings. The qsub command line options can override these settings again.

To discard any previous settings, use the qsub -clear command in a default request
file, in embedded script commands, or in the qsub command line.

Example - Private Default Request File
Here is an example of a private default request file:

-A myproject -cwd -M me@myhost.com -m b e
-r y -j y -S /bin/ksh

Unless overridden, the following is true for all of this user's jobs:

■ The account string is myproject

Note: Submitting a command as a script can add a number of
operations to the submission process and have a negative impact on
performance. This impact can be significant if you have short running
jobs and big job scripts. If job scripts are available on the execution
nodes, that is through NFS, binary submission may be a better choice.

How to Submit an Advanced Job With QMON

Using Grid Engine 2-41

■ The jobs execute in the current working directory

■ Mail notification is sent to me@myhost.com at the beginning and at the end of the
jobs

■ The standard output and standard error output are merged

■ The ksh is used as command interpreter

2.15 How to Submit an Advanced Job With QMON
1. Click the Job Control button in the QMON Main Control window. The Job Control

dialog box appears.

2. Select a pending job and click the Qalter button. The Submit Job dialog box
appears.

3. Click the Advanced Tab, which shown below.

Figure 2–9 Advanced Job Example

The Advanced tab of the Submit Job dialog box enables you to define the
following additional parameters:

■ Parallel Environment - A list of available, configured parallel environments.

■ Environment - A set of environment variables to set for the job before the job
runs. Environment variables can be taken from QMON`s runtime
environment, or you can define your own environment variables.

■ Context - A list of name/value pairs that can be used to store and
communicate job-related information. This information is accessible anywhere
from within a cluster. You can modify context variables from the command
line with the -ac, -dc, and -sc options to qsub, qrsh, qsh, qlogin, and
qalter.

How to Submit an Advanced Job With QMON

2-42 Oracle Grid Engine User Guide

■ Checkpoint Object - The checkpointing environment to use if checkpointing
the job is desirable and suitable. See Monitoring and Controlling Jobs for
details.

■ Account - An account string to associate with the job. The account string is
added to the accounting record that is kept for the job. The accounting record
can be used for later accounting analysis.

■ Verify Mode - The Verify flag determines the consistency checking mode for
your job. To check for consistency of the job request, the Grid Engine system
assumes an empty and unloaded cluster. The system tries to find at least one
queue in which the job could run. Possible checking modes are as follows:

– Skip - No consistency checking at all.

– Warning - Inconsistencies are reported, but the job is still accepted.
Warning mode might be desirable if the cluster configuration should
change after the job is submitted.

– Error - Inconsistencies are reported. The job is rejected if any
inconsistencies are encountered.

– Just verify - The job is not submitted. An extensive report is generated
about the suitability of the job for each host and queue in an empty
cluster.

– Poke - The job is not submitted. An extensive report is generated about the
suitability of the job for each host and queue in the cluster with all
resource utilizations in place.

■ Advance Reservation - A list of available, configured advance reservations.

■ JSV URL - Access to your directory to select from configured server JSV
scripts.

■ Mail - The events about which the user is notified by email. The events' start,
end, abort, and suspend are currently defined for jobs.

■ Mail To - A list of email addresses to which these notifications are sent. Click
the icon at the right of the Mail To field to open a dialog box for defining the
mailing list.

■ Hard Queue List, Soft Queue List - A list of queue names that are requested to
be the mandatory selection for the execution of the job. The Hard Queue List
and the Soft Queue List are treated identically to a corresponding resource
requirement.

■ Master Queue List - A list of queue names that are eligible as master queue for
a parallel job. A parallel job is started in the master queue. All other queues to
which the job spawns parallel tasks are called slave queues.

■ Job Dependencies - A list of IDs of jobs that must finish before the submitted
job can be started. The newly created job depends on completion of those jobs.

■ Hold Array Dependencies - A list of job IDs/and/or job names and sub-tasks.
Each sub-task of the submitted job is not eligible for execution unless the
corresponding sub-tasks of all jobs referenced in the comma-separated job ID
and/or job name list have completed.

■ Deadline - The deadline initiation time for deadline jobs. Deadline initiation
defines the point in time at which a deadline job must reach maximum
priority to finish before a given deadline. To determine the deadline initiation
time, subtract an estimate of the running time, at maximum priority, of a

Monitoring Hosts from the Command Line

Using Grid Engine 2-43

deadline job from its desired deadline time. Click the icon at the right of the
Deadline field to open the dialog box that enables you to set the deadline.

2.16 How to Configure Job Dependencies From the Command Line
Often the most convenient way to build a complex task is to split the task into
subtasks. The Grid Engine system supports interdependent tasks with its job
dependency facility. In these cases, subtasks depend on the completion of other
subtasks before the dependent subtasks can get started. An example is that a
predecessor task produces an output file that must be read and processed by a
dependent task.

You can configure jobs to depend on the completion of one or more other jobs. The
facility is enforced by the qsub -hold_jid command. You can specify a list of jobs
upon which the submitted job depends. The list of jobs can also contain subsets of
array jobs. The submitted job is not eligible for execution unless all jobs in the
dependency list have finished.

To hold a job until another job has finished, type the following command:

qsub -hold_jid <jobid>

You can specify a list of jobs upon which the submitted job depends. The list of jobs
can also contain subsets of array jobs. The submitted job is not eligible for execution
unless all jobs in the dependency list have finished.

qsub -hold_jid 45,46,47,48,49,50 scriptname would ensure that script name
wasn't run until after all the jobs numbered 45 to 50 had completed.

2.17 Monitoring Hosts from the Command Line
Learn how to monitor hosts from the command line.

2.17.1 Using qconf
To display an execution host configuration, type the following command:

% qconf -se <hostname>

The -se option (show execution host) shows the configuration of the specified
execution host as defined in host_conf.

To display an execution host list, type one of the following command:

% qconf -sel

The -sel option (show execution host list) displays a list of hosts that are configured
as execution hosts.

2.17.2 Using qhost
To monitor execution hosts from the command line, type the following command:

Note: Not all users are allowed to submit deadline jobs. Ask your
system administrator if you are permitted to submit deadline jobs.
Contact the cluster administrator for information about the maximum
priority that is given to deadline jobs.

How to Monitor Hosts With QMON

2-44 Oracle Grid Engine User Guide

% qhost

This command produces output that is similar to the following example:

HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
grid1 sol-sparc64 2 0.27 2.0G 256.0M 8.0G 0.0
gridengine2 sol-amd64 4 0.00 3.9G 421.0M 2.0G 0.0
gridengine5 sol-amd64 4 0.00 3.9G 488.0M 7.9G 0.0
gridengine6 sol-amd64 4 0.07 3.9G 2.6G 4.0G 0.0

2.18 How to Monitor Hosts With QMON
1. Click the Queue Control button in the QMON Main Control window. The Cluster

Queues dialog box appears.

2. Click the Hosts tab. The Hosts tab provides a quick overview of all hosts that are
available for the cluster.

Figure 2–10 QMON Cluster Queues

2.18.1 Hosts Status
Each row in the hosts table represents one host. For each host, the table lists the
following information:

■ Host - Name of the host

Monitoring and Controlling Jobs

Using Grid Engine 2-45

■ Arch - Architecture of the host

■ #CPU - Number of processors

■ LoadAvg - Load average of the host

■ %CPU - LoadAvg/(#CPU * 100)

■ MemUsed - Used Memory

■ MemTotal - Total Memory

■ SwapUsed - Used Swap Memory

■ SwapTotal - Total Swap Memory

■ VirtUsed - Virtual Used Memory

■ VirtTotal - Virtual Total Memory

2.19 Monitoring and Controlling Jobs
After you submit jobs, you need to monitor and control them. The following page
provides information about monitoring and controlling jobs.

2.19.1 How to Monitor Jobs From the Command Line
Use the qstat command to perform the following monitoring functions:

■ To display a list of jobs with no queue status information, type the following
command:

qstat

The purpose of most of the columns should be self-explanatory. The state column,
however, contains single character codes with the following meaning: r for
running, s for suspended, q for queued, and w for waiting.

■ To display summary information on all queues and the queued job list, type the
following command:

qstat -f

The display is divided into the following two sections:

■ Available Queues - This section displays the status of all available queues. The
first line of the queue section defines the meaning of the columns with respect
to the queues that are listed. The queues are separated by horizontal lines. If
jobs run in a queue, the job names appear below the associated queue in the
same format as in the qstat command in its first form. The columns of the
queue description provide the following information:

* qtype - Queue type. Queue type is either B (batch) or I (interactive).

* used/free - Count of used and free job slots in the queue.

* states - State of the queue.

Note: Only the job owner or Grid Engine managers and operators
can suspend and resume jobs, delete jobs, hold back jobs, modify job
priority, and modify attributes. See Displaying User Properties.

Monitoring and Controlling Jobs

2-46 Oracle Grid Engine User Guide

■ Pending Jobs - This section shows the status of the sge_qmaster job spool
area. The pending jobs in the second output section are also listed as in qstat`s
first form.

■ To display current job usage and ticket information for a job, type the following
command:

qstat -ext

This command contains details such as up-to-date job usage and tickets assigned
to a job. The following information is displayed:

■ The usage and ticket values assigned to a job, shown in the following columns:

* cpu/mem/io - Currently accumulated CPU, memory, and I/O usage.

* tckts - Total number of tickets assigned to the job.

* ovrts - Override tickets assigned through qalter -ot.

* otckt - Tickets assigned through the override policy.

* ftckt - Tickets assigned through the functional policy.

* stckt - Tickets assigned through the share-based policy.

* Share - Current Resource share that each job has with respect to the
usage generated by all jobs in the cluster.

■ The deadline initiation time in the column deadline, if applicable.

Additional options to the qstat command enhance the functionality. Use the -r
option to display the resource requirements of submitted jobs. Furthermore, the
output can be restricted to a certain user or to a specific queue. You can use the -l
option to specify resource requirements, as described in Defining Resource
Requirements, for the qsub command. If resource requirements are used, only those
queues, and the jobs that are running in those queues, are displayed that match the
resource requirement specified by qstat.

The following examples show output from the qstat and qstat -f commands.

Example - qstat -f Output
queuename qtype used/free load_avg arch states

dq BIP 0/1 99.99 sun4 au

durin.q BIP 2/2 0.36 sun4
 231 0 hydra craig r 07/13/96 20:27:15
MASTER
 232 0 compile penny r 07/13/96 20:30:40
MASTER

Note: The qstat command has been enhanced so that the
administrator and the user may define files that can contain useful
options. A cluster-wide sge_qstat file may be placed under $xxQS_
NAME_Sxx_ROOT/$xxQS_NAME_Sxx_CELL/common/sge_qstat.
The user private file is processed under the location $HOME/.sge_
qstat. The home directory request file has the highest precedence,
then the cluster global file. You can use the command line to override
the flags contained in a file.

Monitoring and Controlling Jobs

Using Grid Engine 2-47

dwain.q BIP 3/3 0.36 sun4
 230 0 blackhole don r 07/13/96 20:26:10
MASTER
 233 0 mac elaine r 07/13/96 20:30:40
MASTER
 234 0 golf shannon r 07/13/96 20:31:44
MASTER

fq BIP 0/3 0.36 sun4

##

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS -

##

 236 5 word elaine qw 07/13/96 20:32:07

 235 0 andrun penny qw 07/13/96 20:31:43

Example - qstat Output
job-ID prior name user state submit/start at queue
function
231 0 hydra craig r 07/13/96 durin.q
MASTER
 20:27:15
232 0 compile penny r 07/13/96 durin.q
MASTER
 20:30:40
230 0 blackhole don r 07/13/96 dwain.q
MASTER
 20:26:10
233 0 mac elaine r 07/13/96 dwain.q
MASTER
 20:30:40
234 0 golf shannon r 07/13/96 dwain.q
MASTER
 20:31:44
236 5 word elaine qw 07/13/96
 20:32:07
235 0 andrun penny qw 07/13/96 20:31:43

2.19.2 How to Monitor Jobs With QMON
To monitor jobs with QMON, click the Job Control button in the QMON Main Control
window. The Job Control dialog box appears, as shown below.

Monitoring and Controlling Jobs

2-48 Oracle Grid Engine User Guide

Figure 2–11 QMON Job Control

2.19.2.1 How to Get Additional Information About Jobs With the QMON Object
Browser
You can use the QMON Object Browser to quickly retrieve additional information
about jobs without having to customize the Job Control dialog box, as explained in
How to Monitor Jobs With QMON.

To display information about jobs using the Object Browser, use one of the following
methods:

■ From the Job Control dialog box, move the pointer over a job name.

■ From the Browser dialog box, click Job.

2.19.3 How to Control Jobs From the Command Line

Use qdel and qmod in the following ways to control jobs from the command line:

■ To delete a job, regardless of whether a job is running or spooled, type the
following command:

qdel <job-id>

■ To suspend a job that is already running, type the following command:

qmod -sj <job-id>

■ To restart a suspended job, type the following command:

qmod -usj <job-id>

Note: In order to delete, suspend, or resume a job, you must be the
owner of the job or a Grid Engine manager or operator. For more
information, see Users and User Categories.

Monitoring and Controlling Jobs

Using Grid Engine 2-49

To retrieve a job_id number, use qstat. For more information, see How to Monitor
Jobs From the Command Line.

If an execution daemon is unreachable, you can use the -f (force) option with both
commands to register a job status change at master daemon. The -f option is intended
for use only by an administrator. However, In the case of qdel, users can force
deletion of their own jobs if the flag ENABLE_FORCED_QDEL in the cluster
configuration qmaster_params entry is set.

2.19.4 How to Control Jobs With QMON
1. Click the Job Control button in the QMON Main Control window. The Job Control

dialog box appears, as shown below.

2. You can perform the following tasks from the Job Control dialog box:

■ To monitor jobs, click the Pending Jobs, Running Jobs, or Finished Jobs tab.

■ To refresh the Job Control display, click the Refresh button to force an update.
QMON then uses a polling scheme to retrieve the status of the jobs from sge_
qmaster.

■ To modify job attributes, select a pending or running job and then click the
Qalter button. For more information, see How to Modify Job Attributes.

■ To change job priority, select a pending or running job and then press the
Priority button. For more information, see How to Change Job Priority.

■ To put a job or an array task on hold, select a pending job and then press the
Hold button. For more information, see How to Put Jobs and Array Job Tasks
on Hold.

■ To force a job, first select a pending job or running job, next select the Force
option and then click the Suspend, Resume, or Delete buttons. For more
information, see How to Force Jobs.

■ To verify job consistency, select a pending job and then click the Qalter button.
For more information, see How to Verify Job Consistency.

■ To get information about pending jobs using the Why? button, select a
pending job and then click the Why? button. For more information, see How
to Use the Why? Button to Get Information About Pending Jobs.

■ To clear error states, select a pending job and then click the Clear Error button.
For more information, see How to Clear Error States.

■ To filter the job list, click the Customize button. For more information, see
How to Filter the Job List.

Note: To select jobs, use the following mouse and key combinations:

■ To select multiple noncontiguous jobs, hold down the Control key
and click two or more jobs.

■ To select a contiguous range of jobs, hold down the Shift key, click
the first job in the range, and then click the last job in the range.

■ To toggle between selecting a job and clearing the selection, click
the job while holding down the Control key.

Monitoring and Controlling Jobs

2-50 Oracle Grid Engine User Guide

■ To customize the job control display, click the Customize button. For more
information, see How to Customize the Job Control Display.

How to Modify Job Attributes
1. Click a pending or running job on the and Job Control dialog box and then click

the Qalter button. The Submit Job dialog box appears. All the entries of the dialog
box correspond to the attributes of the job that were defined when the job was
submitted.

2. Edit available entries appropriately.

3. Click the Qalter button, a substitute for the Submit button on the Submit Job
dialog box, to register changes with the Grid Engine system.

 How to Change Job Priority
1. Select a pending or running job on the Job Control dialog box and then click the

Priority button. The priority dialog box appears, as shown below. This dialog box
enables you to change the priority of selected pending or running jobs. The
priority ranks a single user's jobs among themselves. Priority tells the scheduler
how to choose among a single user's jobs when several jobs are in the system
simultaneously.

2. Enter a new priority for the selected job(s) in the field and then click OK.

How to Put Jobs and Array Job Tasks on Hold
As long as any hold is assigned to a job or an array job task, the job or array job task is
not eligible for running.

■ To put a job on hold, select a pending job from the Job Control Dialog dialog box,
shown above, and click Hold. The Set Hold dialog box appears. The Set Hold
dialog box enables you to set and reset user, operator, and system holds.

■ To put an array task on hold, do the following:

1. Select a pending job from the Job Control dialog box and click Hold. The Set
Hold dialog box appears.

2. Use the Tasks field to put a hold on particular subtasks of an array job. The
task ID range specified in this field can be a single number, a simple range of
the form n-m, or a range with a step size. For example, the task ID range
specified by 2-10:2 results in the task ID indexes 2, 4, 6, 8, and 10. This
range represents a total of five identical tasks, with the environment variable
SGE_TASK_ID containing one of the five index numbers.

Note: Entries that cannot be changed are grayed out.

Note: User holds can be set or reset by the job owner as well as by
Grid Engine managers and operators. Operator holds can be set or
reset by managers and operators. System holds can be set or reset by
managers only. You can also set or reset holds by using the qalter,
qhold, and qrls commands.

Monitoring and Controlling Jobs

Using Grid Engine 2-51

How to Force Jobs
Only running jobs can be suspended or resumed. Only pending jobs can be
rescheduled, held back and modified, in priority as well as in other attributes.

1. To force jobs, select a job from the Pending Jobs tab or the Running Jobs tab and
then select the Force option.

2. Click the Suspend, Resume, or Delete buttons.

Suspension of a job sends the signal SIGSTOP to the process group of the job with the
UNIX kill command. SIGSTOP halts the job and no longer consumes CPU time.
Resumption of the job sends the signal SIGCONT, thereby unsuspending the job.

 How to Verify Job Consistency

1. Select a pending job from the Job Control dialog box and click the Qalter button.

2. Click the Advanced tab.

3. Select the desired consistency-checking mode for the Verify flag, and then click
Qalter.

 How to Use the Why? Button to Get Information About Pending Jobs

To get information about pending jobs, select a pending job from the Job Control
dialog box and click the Why? button. The Object Browser dialog box appears. As
shown below, this dialog box displays a list of reasons that prevented the scheduler
from dispatching the job in its most recent pass.

Note: You can force suspending, resuming, and deleting jobs. In
other words, you can register these actions with sge_qmaster
without notifying the sge_execd that controls the jobs. Forcing is
useful when the corresponding sge_execd is unreachable, for
example, due to network problems.

Note: The Verify flag on the Submit Job dialog box has a special
meaning when the flag is used in the Qalter mode. You can check
pending jobs for consistency, and you can investigate why jobs are not
yet scheduled.

Note: The system displays warnings on inconsistencies, depending
on the checking mode you select. See How to Submit an Advanced Job
With QMON for more information.

Note: The Why? button delivers meaningful output only if the
scheduler configuration parameter schedd_job_info is set to true.

Note: The displayed scheduler information relates to the last
scheduling interval. The information might not be accurate by the
time you investigate why your job was not scheduled.

Monitoring and Controlling Jobs

2-52 Oracle Grid Engine User Guide

How to Clear Error States
To clear error states, select a pending job from the Job Control dialog box and then
click the Clear Error button. This removes an error state from a pending job that failed
due to a job-dependent problem. For example, the job might have insufficient
permissions to write to the specified job output file.

Error states appear in red text in the pending jobs list. You should remove jobs only
after you correct the error condition, for example, using qalter. Such error conditions
are automatically reported through email if the job requests to send email when the
job is aborted. For example, the job might have been aborted with the qsub -m a
command.

How to Filter the Job List
1. Click the Customize button in the Job Control dialog box. The Job Customize box

appears, as shown below.

2. Click the Filter Jobs tab.

Example - Filtering the Job List
The following example of the filtering facility selects only jobs that are suitable to be
run on the architecture solaris64. The following figure shows the resulting Running
Jobs tab of the Job Control dialog box. The Job Control dialog box that is shown in the
previous figure is also an example of how QMON displays array jobs.

How to Customize the Job Control Display
1. Click the Customize button on the Job Control dialog box. The Job Customize

dialog box appears.

2. Click the Select Job Fields tab. A sample Select Job Fields tab is shown in the
following figure.

3. Use the Job Customize dialog box to configure the set of information to display.
You can select more entries of the job object to be displayed.

4. Use the Save button on the Job Customize dialog box to store the customizations
in the file .qmon_preferences. This file is located in the user's home directory.
By saving your customizations, you redefine the appearance of the Job Control
dialog box.

2.19.5 How to Monitor Jobs by Email
From the command line, type the following command with appropriate arguments.

% qsub -m <arguments>

The qsub -m command requests email to be sent to the user who submitted a job or
to the email addresses specified by the -M flag if certain events occur. An argument to
the -m option specifies the events. The following arguments are available:

■ b - Send email at the beginning of the job.

■ e - Send email at the end of the job.

■ a - Send email when the job is rescheduled or aborted For example, by using the
qdel command.

■ s - Send email when the job is suspended.

■ n - Do not send email.n is the default.

Monitoring and Controlling Queues

Using Grid Engine 2-53

Use a string made up of one or more of the letter arguments to specify several of these
options with a single -m option. For example, -m be sends email at the beginning and
at the end of a job.

2.19.6 How to Monitor Jobs by Email With QMON
1. Click the Job Control button in the QMON Main Control window. The Job Control

dialog box appears.

2. Select a pending job and click the Qalter button. The Submit Job dialog box
appears, as shown below.

3. Select the Advanced Tab.

4. Click on the icon left of the Mail To field to select or add email addresses of the
user or users who are responsible for monitoring jobs.

2.20 Monitoring and Controlling Queues
After you configure queues, you need to monitor and control them. This page
provides information about monitoring and controlling queues.

2.20.1 How to Control Queues From the Command Line

You can use qmod to control queues in the following ways:

■ To suspend a queue and any active jobs on that queue, type the following
command:

qmod -sq <q-name>,...

■ To unsuspend a queue and any active jobs on that queue, type the following
command:

qmod -usq <q-name>,...

■ To disable a queue and stop any jobs from being dispatched to the queue, type the
following command:

qmod -d <q-name>,...

■ To enable a queue, type the following command:

qmod -e <q-name>,...

The -f option forces registration of the status change in sge_qmaster when the
corresponding sge_execd is not reachable, for example, due to network problems.

Note: You can also configure this parameter at the time of job
submission using the Submit Job dialog box.

Note: Suspending and resuming queues as well as disabling and
enabling queues requires queue owner permission, manager
permission, or operator permission. For more information, see Users
and User Categories.

Monitoring and Controlling Queues

2-54 Oracle Grid Engine User Guide

2.20.2 How to Monitor and Control Cluster Queues With QMON
1. Click the Queue Control button in the QMON Main Control window. The Cluster

Queues dialog box appears, as shown below.

2. Click the Cluster Queues tab. The Cluster Queues tab provides a quick overview
of all cluster queues that are defined for the cluster.

3. Select a cluster queue name.

4. Click Delete, Suspend, Resume, Disable, or Enable to execute the corresponding
operation on cluster queues that you select.

The suspend/resume and disable/enable operations require cluster queue owner
permission, Grid Engine manager permission, or operator permission. See Users
and User Categories for details.

Suspended cluster queues are closed for further jobs. The jobs already running in
suspended queues are also suspended, as described in Monitoring and Controlling
Jobs. The cluster queue and its jobs are unsuspended as soon as the queue is
resumed.

5. Click Clear Error to remove an error state from a queue. Error states are displayed
using a red font in the queue list.

6. Click Reschedule to reschedule all jobs currently running in the selected cluster
queues.

7. Click Add or Modify on the Cluster Queue dialog box to configure cluster queues
and queue instances. See Oracle Grid Engine Administration Guide for configuring
queues details.

8. Click Done to close the dialog box.

2.20.2.1 Cluster Queue Status
Each row in the cluster queue table represents one cluster queue. For each cluster
queue, the table lists the following information:

Note: Information displayed in the Cluster Queues dialog box is
updated periodically. Click Refresh to force an update.

Note: The suspend/resume and disable/enable operations require
notification of the corresponding sge_execd. If notification is not
possible, you can force an sge_qmaster internal status change by
clicking Force. For example, notification might not be possible because
a host is down.

Note: If a job in a suspended cluster queue was suspended explicitly,
the job is not resumed when the queue is resumed. The job must be
resumed explicitly. Disabled cluster queues are closed. However, the
jobs that are running in those queues are allowed to continue. The
disabling of a cluster queue is commonly used to clear a queue. After
the cluster queue is enabled, it is eligible to run jobs again. No action
on currently running jobs is performed.

Monitoring and Controlling Queues

Using Grid Engine 2-55

■ Cluster Queue - Name of the cluster queue.

■ Load - Average of the normalized load average of all cluster queue hosts. Only
hosts with a load value are considered.

■ Used - Number of currently used job slots.

■ Avail - Number of currently available job slots.

■ Total - Total number of job slots.

■ aoACD - Number of queue instances that are in at least one of the following states:

■ a - Load threshold alarm

■ o - Orphaned

■ A - Suspend threshold alarm

■ C - Suspended by calendar

■ D - Disabled by calendar

■ cdsuE - Number of queue instances that are in at least one of the following states:

■ c - Configuration ambiguous

■ d - Disabled

■ s - Suspended

■ u - Unknown

■ E - Error

■ s - Number of queue instances that are in the suspended state.

■ A - Number of queue instances where one or more suspend thresholds are
currently exceeded. No more jobs

■ S - Number of queue instances that are suspended through subordination to
another queue.

■ C - Number of queue instances that are automatically suspended by the Grid
Engine system calendar.

■ u - Number of queue instances that are in an unknown state.

■ a - Number of queue instances where one or more load thresholds are currently
exceeded.

■ d - Number of queue instances that are in the disabled state.

■ D - Number of queue instances that are automatically disabled by the Grid Engine
system calendar.

■ c - Number of queue instances whose configuration is ambiguous.

■ o - Number of queue instances that are in the orphaned state.

■ E - Number of queue instances that are in the error state.

2.20.3 How to Monitor Queues With QMON
1. Click the Queue Control button in the QMON Main Control window. The Cluster

Queues dialog box appears, as shown below.

2. Click the Cluster Queues tab. The Cluster Queues tab provides a quick overview
of all cluster queues that are defined for the cluster.

Using Job Checkpointing

2-56 Oracle Grid Engine User Guide

2.21 Using Job Checkpointing
For an introduction to checkpointing and checkpointing environments, see Oracle Grid
Engine Administration Guide for managing checkpointing environments.

2.21.1 Migrating Checkpointing Jobs
Checkpointing jobs are interruptible at any time because their restart capability
ensures that very little work that is already done must be repeated. This ability is used
to build migration and dynamic load balancing mechanism in the Grid Engine system.
If requested, checkpointing jobs are stopped on demand. The jobs are migrated to
other machines in the Grid Engine system, thus averaging the load in the cluster
dynamically. Checkpointing jobs are stopped and migrated for the following reasons:

■ The executing queue or the job is suspended explicitly by a qmod or a QMON
command.

■ The job or the queue where the job runs is suspended automatically because a
suspend threshold for the queue is exceeded. The checkpoint occasion
specification for the job includes the suspension case. For more information,
see How to Configure Load and Suspend Thresholds and How to
Submit, Monitor, or Delete a Checkpointing Job.

A migrating job moves back to sge_qmaster. The job is subsequently dispatched to
another suitable queue if such a queue is available. In such a case, the qstat output
shows R as the status.

2.21.2 File System Requirements for Checkpointing
When a user-level checkpoint or a kernel-level checkpoint that is based on a
checkpointing library is written, a complete image of the virtual memory covered by
the process or job to be checkpointed must be saved. Sufficient disk space must be
available for this purpose. If the checkpointing environment configuration parameter
ckpt_dir is set, the checkpoint information is saved to a job private location under
ckpt_dir. If ckpt_dir is set to NONE, the directory where the checkpointing job
started is used.

Checkpointing files and restart files must be visible on all machines in order to
successfully migrate and restart jobs. Because file visibility is necessary for the way file
systems must be organized, NFS or a similar file system is required. Ask your cluster
administration if your site meets this requirement.

If your site does not run NFS, you can transfer the restart files explicitly at the
beginning of your shell script. For example, you can use rcp or ftp in the case of
user-level checkpointing jobs.

2.21.3 Writing a Checkpointing Job Script
Shell scripts for kernel-level checkpointing are the same as regular shell scripts.

Note: Information displayed in the Cluster Queues dialog box is
updated periodically. Click Refresh to force an update.

Note: You should start a checkpointing job with the qsub -cwd
script if ckpt_dir is set to NONE.

Using Job Checkpointing

Using Grid Engine 2-57

Shell scripts for user-level checkpointing jobs differ from regular batch scripts only in
their ability to properly handle the restart process. The environment variable
RESTARTED is set for checkpointing jobs that are restarted. Use this variable to skip
sections of the job script that need to be executed only during the initial invocation.

The following example shows a sample transparently checkpointing job script.

Example – Checkpointing Job Script
#!/bin/sh
#Force /bin/sh in Grid Engine
#$ -S /bin/sh

Test if restarted/migrated
if [$RESTARTED = 0]; then
 # 0 = not restarted
 # Parts to be executed only during the first
 # start go in here
 set_up_grid
fi

Start the checkpointing executable
fem
#End of scriptfile
The job script restarts from the beginning if a user-level checkpointing job is migrated.
The user is responsible for directing the program flow of the shell script to the location
where the job was interrupted. Doing so skips those lines in the script that must be
executed more than once.

2.21.4 How to Submit a Checkpointing Job From the Command Line
Checkpointing job scripts are similar to regular batch scripts with the exception of the
qsub -ckpt and qsub -c commands. These commands request a checkpointing
mechanism define the occasions at which checkpoints must be generated for the job.

■ To select a checkpointing environment for a job, use the following argument for
the qsub command:

qsub -ckpt <ckpt_name>

This argument is also available for qalter.

■ To define (or redefine) how a job should be checkpointed, use the following
commmand:

qsub -c <occasion_specifier>

The -c option is not required. This argument can be used to overwrite the
definitions of the when parameter in the checkpointing environment that is
referenced by the qsub -ckpt switch. This argument is also available for
qalter.

For information on configuring checkpointing environments, see Oracle Grid Engine
Administration Guide for managing checkpointing environments.

Note: Kernel-level checkpointing jobs are interruptible at any time.
The embracing shell script is restarted exactly from the point where
the last checkpoint occurred. Therefore, the RESTARTED environment
variable is not relevant for kernel-level checkpointing jobs.

Managing Core Binding

2-58 Oracle Grid Engine User Guide

2.21.5 How to Submit a Checkpointing Job With QMON
The submission of checkpointing jobs With QMON is identical to submitting regular
batch jobs, with the addition of specifying an appropriate checkpointing environment.

1. Click the Job Control button in the QMON Main Control window. The Job Control
dialog box appears.

2. Select a pending job and click the Qalter button. The Submit Job dialog box
appears.

3. Click the Advanced Tab, which shown below.

4. Click the button next to that field to open the following Selection dialog box.

5. Select a suitable checkpointing environment from the list of available checkpoint
objects. Ask your system administrator for information about the properties of the
checkpointing environments that are installed at your site.

For more information, see Oracle Grid Engine Administration Guide for managing
checkpointing environments.

2.22 Managing Core Binding
1. PROCEDURE MISSING

2.22.1 Submit Simple Jobs with Core Binding
You can submit simple jobs with core binding. The following example tries to bind the
binary sleep on two successive cores when possible on a single socket. Additionally an
execution host is requested that has 4 cores.

qsub -b y -binding linear:2 -l m_core=4 sleep 3600

2.22.2 Submit Array Jobs with Core Binding
You can use core binding with array jobs but this is not recommended for the explicit
request, and the linear, and striding with a given start point. In these cases, only one
solution for binding is valid and therefore just the first task can be bound.

In the following example, eight array tasks each running on a different core, are
spawned.

% qsub -b y -t 1:8 -binding linear:1 -l m_core=8 sleep 3600

On an eight core host with Solaris operating system the following binding is done:

% qstat -cb -j <jobno>

...
job_args: 3600
script_file: sleep
job-array tasks: 1-8:1
binding: set linear:1
...
binding 1: ScttCTTCTTCTTSCTTCTTCTTCTT
binding 2: SCTTCTTCTTCTTScttCTTCTTCTT
binding 3: SCTTcttCTTCTTSCTTCTTCTTCTT
binding 4: SCTTCTTCTTCTTSCTTcttCTTCTT
binding 5: SCTTCTTcttCTTSCTTCTTCTTCTT
binding 6: SCTTCTTCTTCTTSCTTCTTcttCTT

Managing Core Binding

Using Grid Engine 2-59

binding 7: SCTTCTTCTTcttSCTTCTTCTTCTT
binding 8: NONE
...

More detailed information regarding the task eight not being bound, see the processor
set feature of Solaris OS. As all other seven jobs have one core exclusively bound to
them, the last remaining core can not be used for core binding as the operating system
itself have to be run somewhere. But in this case, the task eight is running on the
remaining core.

In this example, the core allocation scheme of the linear request can be examined. The
first core is allocated to the socket which is free. Therefore, the second task is running
on the second socket. For the third task, no sockets are free hence the first socket with
the most free cores is used. Therefore job four can be found on the other socket and so
on.

When submitting the same job with the striding strategy on a Linux operating system
the output is slightly different. Here, each task is bound and each task takes the first
free core that can be used.

% qsub -b y -binding striding:1:1 -l m_core=8 sleep 3600

% qstat -cb -j <jobid>
....
job_args: 3600
script_file: sleep
job-array tasks: 1-8:1
binding: set striding:1:1
...
binding 1: ScttCTTCTTCTTSCTTCTTCTTCTT
binding 2: SCTTcttCTTCTTSCTTCTTCTTCTT
binding 3: SCTTCTTcttCTTSCTTCTTCTTCTT
binding 4: SCTTCTTCTTcttSCTTCTTCTTCTT
binding 5: SCTTCTTCTTCTTScttCTTCTTCTT
binding 6: SCTTCTTCTTCTTSCTTcttCTTCTT
binding 7: SCTTCTTCTTCTTSCTTCTTcttCTT
binding 8: SCTTCTTCTTCTTSCTTCTTCTTctt
...

2.22.3 Submit Parallel Jobs with Core Binding
You can submit parallel jobs with core binding. The recommended way of starting
parallel/multi-threaded jobs is to use a parallel environment. The number of
requested cores is reflected with the slots variable. In the following example, the
parallel environment mytestpe is used.

% qconf -sp mytestpe
pe_name mytestpe
slots 1024
user_lists NONE
xuser_lists NONE
start_proc_args NONE
stop_proc_args NONE
allocation_rule $pe_slots
control_slaves FALSE
job_is_first_task TRUE
urgency_slots min
accounting_summary FALSE

Automating Grid Engine Functions Through DRMAA

2-60 Oracle Grid Engine User Guide

In the example below, a four way parallel loosely integrated job is started and is
running on one host (because the allocation rule $pe_slots that was configured in
the parallel environment mytestpe).

% qsub -b y -pe mytestpe 4 -binding linear:4 sleep 3600

Multi-process or multi-threaded array tasks can be submitted in the same way. The
following examples shows the submission of four array tasks each using two slots.

% qsub -b y -pe mytestpe 2 -t 1:4 -binding linear:2 sleep 3600

2.22.3.1 Submit Tightly Integrated Parallel Jobs with Core Binding
When you submit parallel jobs, the same limitations as for array tasks is taken into
account. It means that only the linear and striding strategy without a given start point
make sense. Otherwise, just one task per host will be bound because of core collisions.

In case of tight integration, the qrsh --inherit does not support the binding
request as parameter. The request is available on the execution host for the tasks. It
means when -binding linear:1 was requested (via qsub) each task is started
with qrsh and tried to be bound on a different core. Hence, when the connection is
established the job run will be bound according the request.

2.23 Automating Grid Engine Functions Through DRMAA
You can automate Grid Engine functions by writing scripts that run Grid Engine
commands and parse the results. However, for more consistent and efficient results,
you can use the C or Java language and the Distributed Resource Management
Application API. This section introduces the DRMAA concept and explains how to use
it with the C and Java languages.

The Distributed Resource Management Application API (DRMAA, which is
pronounced like "drama") is an Open Grid Forum specification to standardize job
submission, monitoring, and control in Distributed Resource Management Systems
(DRMS). The objective of the DRMAA Working Group was to produce an API that
would be easy to learn, easy to implement, and that would enable useful application
integrations with DRMS in a standard way.

The DRMAA specification is language, platform, and DRMS agnostic. A wide variety
of systems should be able to implement the DRMAA specification. To provide
additional guidance for DRMAA implementation in specific languages, the DRMAA
Working Group also produced several DRMAA language binding specifications.
These specifications define what a DRMAA implementation should resemble in a
given language.

The DRMAA specification is currently at version 1.0. The DRMAA Java Language
Binding Specification is also at version 1.0, as is the DRMAA C Language Binding
Specification. Grid Engine provides implementations of both the 1.0 Java language
binding and the 1.0 C language binding.

For more information about the DRMAA 1.0 specification, see the language specific
binding specifications on the Open Grid Forum DRMAA Working Group Web Site

2.23.1 Developing With the C Language Binding

Automating Grid Engine Functions Through DRMAA

Using Grid Engine 2-61

2.23.1.1 Important Files for the C Language Binding
To use the DRMAA C language binding implementation included with Grid Engine,
you need to know where to find the important files. The most important file is the
DRMAA header file that you included from your C application to make the DRMAA
functions available to your application. The DRMAA header file resides in the $SGE_
ROOT/include/drmaa.h, where $SGE_ROOT defaults to /usr/SGE. To compile and
link your application, use the DRMAA shared library at $SGE_ROOT/lib/$SGE_
ARCH/libdrmaa.so.

2.23.1.2 Including the DRMAA Header File
To use the DRMAA functions in your application, every source file that uses a
DRMAA function must include the DRMAA header file. To include the DRMAA
header file in your source file, add the following line to your source code:

#include "drmaa.h"

2.23.1.3 Compiling Your C Application
When you compile your DRMAA application, you need to include some additional
compiler directives to direct the compiler and linker to use DRMAA. The following
directions apply to the Sun Studio Compiler Collection and to gcc. These instructions
might not apply for other compilers and linkers. Consult the documentation for your
specific compiler and linker products.

You must include the following two directives:

■ Tell the compiler to include the DRMAA header file by adding the following
statement to the compiler command line:

-$SGE_ROOT/include

■ Tell the linker to include the DRMAA library by adding the following statement to
the compiler and/or linker command line:

-ldrmaa

You also need to verify that the $SGE_ROOT/lib/$SGE_ARCH directory is included
in your library search path. The path is LD_LIBRARY_PATH on the Solaris Operating
Environment and Linux. The $SGE_ROOT/lib/$SGE_ARCH directory is not included
automatically when you set your environment using the settings.sh or
settings.csh files.

Example - Compiling Your C Application Using Sun Studio Compiler
The following example shows how you would compile your DRMAA application
using the Sun Studio Compiler. The following assumptions apply:

■ You are using the csh shell on a Solaris host.

■ Grid Engine is installed in /sge.

■ The DRMAA application is stored in app.c.

Sample commands would look like the following:

% source /sge/default/common/settings.csh
% cc -I/sge/include -ldrmaa app.c

2.23.1.4 Running Your C Application
To run your compiled DRMAA application, verify the following:

Automating Grid Engine Functions Through DRMAA

2-62 Oracle Grid Engine User Guide

The $SGE_ROOT/lib/$SGE_ARCH directory must be included in the library search
path (LD_LIBRARY_PATH on the Solaris Operating Environment and Linux). The
$SGE_ROOT/lib/$SGE_ARCH directory is not included automatically when you set
your environment using the settings.sh or settings.csh files.

You must be logged into a machine that is a Grid Engine submit host. If the machine is
not a Grid Engine submit host, all DRMAA function calls will fail, returning DRMAA_
ERRNO_DRM_COMMUNICATION_FAILURE.

2.23.1.5 C Application Examples
The following examples illustrate some application interactions that use the C
language bindings. You can find additional examples on the "How To" section of the
Grid Engine Community Site.

Example - Starting and Stopping a Session
Every call to a DRMAA function returns an error code. If everything goes well, that
code is DRMAA_ERRNO_SUCCESS. If an error occurs, an appropriate error code is
returned.

Every DRMAA function also takes at least two parameters:

■ A string to populate with an error message in case of an error

■ An integer representing the maximum length of the error string

On line 8, the example calls drmaa_init(). This function sets up the DRMAA
session and must be called before most other DRMAA functions. Some functions, like
drmaa_get_contact(), can be called before drmaa_init(), but these functions
only provide general information. Any function that performs an action, such as
drmaa_run_job() or drmaa_wait() must be called after drmaa_init() returns.
If such a function is called before drmaa_init() returns, it will return the error code
DRMAA_ERRNO_NO_ACTIVE_SESSION.

The dmraa_init() function creates a session and starts an event client listener
thread. The session is used for organizing jobs submitted through DRMAA, and the
thread is used to receive updates from the queue master about the state of jobs and the
system in general. Once drmaa_init() has been called successfully, the calling
application must also call drmaa_exit() before terminating. If an application does
not call drmaa_exit() before terminating, the queue master might be left with a
dead event client handle, which can decrease queue master performance.

At the end of the program, on line 17, drmaa_exit() cleans up the session and stops
the event client listener thread. Most other DRMAA functions must be called before
drmaa_exit(). Some functions, like drmaa_get_contact(), can be called after
drmaa_exit(), but these functions only provide general information. Any function
that performs an action, such as drmaa_run_job() or drmaa_wait() must be
called before drmaa_exit() is called. If such a function is called after drmaa_
exit() is called, it will return the error code DRMAA_ERRNO_NO_ACTIVE_SESSION.

01: #include
02: #include "drmaa.h"
03:
04: int main(int argc, char **argv) {
05: char error[DRMAA_ERROR_STRING_BUFFER];
06: int errnum = 0;
07:
08: errnum = drmaa_init(NULL, error, DRMAA_ERROR_STRING_BUFFER);
09:
10: if (errnum != DRMAA_ERRNO_SUCCESS) {

Automating Grid Engine Functions Through DRMAA

Using Grid Engine 2-63

11: fprintf(stderr, "Could not initialize the DRMAA library: %s\n", error);
12: return 1;
13: }
14:
15: printf("DRMAA library was started successfully\n");
16:
17: errnum = drmaa_exit(error, DRMAA_ERROR_STRING_BUFFER);
18:
19: if (errnum != DRMAA_ERRNO_SUCCESS) {
20: fprintf(stderr, "Could not shut down the DRMAA library: %s\n", error);
21: return 1;
22: }
23:
24: return 0;
25: }

Example - Running a Job
The following code segment shows how to use the DRMAA C binding to submit a job
to Grid Engine. The beginning and end of this program are the same as in the
preceding example. The differences are on lines 16 through 59. On line 16, DRMAA
allocates a job template. A job template is a structure used to store information about a
job to be submitted. The same template can be reused for multiple calls to drmaa_
run_job() or drmaa_run_bulk_job().

On line 22, the DRMAA_REMOTE_COMMAND attribute is set. This attribute tells DRMAA
where to find the program to run. Its value is the path to the executable. The path can
be relative or absolute. If relative, the path is relative to the DRMAA_WD attribute, which
defaults to the user's home directory. For this program to work, the script
sleeper.sh must be in your default path.

On line 32, the DRMAA_V_ARGV attribute is set. This attribute tells DRMAA what
arguments to pass to the executable.

On line 43 , drmaa_run_job() submits the job. DRMAA places the id assigned to the
job into the character array that is passed to drmaa_run_job(). The job is now
running as though submitted by qsub. At this point, calling drmaa_exit() or
terminating the program will have no effect on the job.

To clean things up, the job template is deleted on line 54. This frees the memory
DRMAA set aside for the job template, but has no effect on submitted jobs.

Finally, on line 61, drmaa_exit() is called. The drmaa_exit() call is outside of the
if structure started on line 18 because when drmaa_init() is called, drmaa_exit()
must be called before terminating, regardless of successive commands.

01: #include
02: #include "drmaa.h"
03:
04: int main(int argc, char **argv) {
05: char error[DRMAA_ERROR_STRING_BUFFER];
06: int errnum = 0;
07: drmaa_job_template_t *jt = NULL;
08:
09: errnum = drmaa_init(NULL, error, DRMAA_ERROR_STRING_BUFFER);
10:
11: if (errnum != DRMAA_ERRNO_SUCCESS) {
12: fprintf(stderr, "Could not initialize the DRMAA library: %s\n", error);
13: return 1;
14: }

Automating Grid Engine Functions Through DRMAA

2-64 Oracle Grid Engine User Guide

15:
16: errnum = drmaa_allocate_job_template(&jt, error, DRMAA_ERROR_STRING_
BUFFER);
17:
18: if (errnum != DRMAA_ERRNO_SUCCESS) {
19: fprintf(stderr, "Could not create job template: %s\n", error);
20: }
21: else {
22: errnum = drmaa_set_attribute(jt, DRMAA_REMOTE_COMMAND, "sleeper.sh",
23: error, DRMAA_ERROR_STRING_BUFFER);
24:
25: if (errnum != DRMAA_ERRNO_SUCCESS) {
26: fprintf(stderr, "Could not set attribute \"%s\": %s\n",
27: DRMAA_REMOTE_COMMAND, error);
28: }
29: else {
30: const char *args[2] = {"5", NULL};
31:
32: errnum = drmaa_set_vector_attribute(jt, DRMAA_V_ARGV, args, error,
33: DRMAA_ERROR_STRING_BUFFER);
34: }
35:
36: if (errnum != DRMAA_ERRNO_SUCCESS) {
37: fprintf(stderr, "Could not set attribute \"%s\": %s\n",
38: DRMAA_REMOTE_COMMAND, error);
39: }
40: else {
41: char jobid[DRMAA_JOBNAME_BUFFER];
42:
43: errnum = drmaa_run_job(jobid, DRMAA_JOBNAME_BUFFER, jt, error,
44: DRMAA_ERROR_STRING_BUFFER);
45:
46: if (errnum != DRMAA_ERRNO_SUCCESS) {
47: fprintf(stderr, "Could not submit job: %s\n", error);
48: }
49: else {
50: printf("Your job has been submitted with id %s\n", jobid);
51: }
52: } /* else */
53:
54: errnum = drmaa_delete_job_template(jt, error, DRMAA_ERROR_STRING_
BUFFER);
55:
56: if (errnum != DRMAA_ERRNO_SUCCESS) {
57: fprintf(stderr, "Could not delete job template: %s\n", error);
58: }
59: } /* else */
60:
61: errnum = drmaa_exit(error, DRMAA_ERROR_STRING_BUFFER);
62:
63: if (errnum != DRMAA_ERRNO_SUCCESS) {
64: fprintf(stderr, "Could not shut down the DRMAA library: %s\n", error);
65: return 1;
66: }
67:
68: return 0;
69: }

Automating Grid Engine Functions Through DRMAA

Using Grid Engine 2-65

2.23.2 Developing With the Java Language Binding

2.23.2.1 Important Files for the Java Language Binding
To use the DRMAA Java language binding implementation included with Grid
Engine, you need to know where to find the important files. The most important file is
the DRMAA JAR file $SGE_ROOT/lib/drmaa.jar. To compile your DRMAA
application, you must include the DRMAA JAR file in your CLASSPATH. The
DRMAA classes are documented in the DRMAA Javadoc, located in the $SGE_
ROOT/doc/javadocs directory. To access the Javadocs, open the file $SGE_
ROOT/doc/javadocs/index.html in your browser. When you are ready to run
your application, you also need the DRMAA shared library, $SGE_ROOT/lib/$SGE_
ARCH/libdrmaa.so, which provides the required native routines.

2.23.2.2 Importing the DRMAA Java Classes and Packages
To use the DRMAA classes in your application, your classes should import the
DRMAA classes or packages. In most cases, only the classes in the org.ggf.drmaa
package will be used. You can import these packages individually or using a wildcard
package import. In some rare cases, you might need to reference the Grid Engine
DRMAA implementation classes found in the com.sun.grid.drmaa package. In
those cases, you can import the classes individually or you can import all the classes in
a given package. The names of the com.sun.grid.drmaa classes do not overlap
with the org.ggf.drmaa classes, so you can import both packages without creating a
namespace collision.

2.23.2.3 Compiling Your Java Application
To compile your DRMAA application, you must include the $SGE_
ROOT/lib/drmaa.jar file in your CLASSPATH. The drmaa.jar file will not be
included automatically when you set your environment using the settings.sh or
settings.csh files.

2.23.2.4 How to Use DRMAA With NetBeans 5.x
To use the DRMAA classes with your NetBeans 5.0 or 5.5 project, follow these steps:

1. Click mouse button 3 on the project node and select Properties.

2. Determine whether your project generates a build file or uses an existing file.

If your project uses a generated build file:

1. Select Libraries in the left column.

2. Click Add Library.

3. Click Manage Libraries in the Libraries dialog box.

4. Click New Library in the Library Management dialog box.

5. Type DRMAA in the Library Name field in the New Library dialog box.

6. Click OK to dismiss the New Library dialog box.

7. Click Add JAR/Folder.

8. Browse to the $SGE_ROOT/lib directory in the file chooser dialog box and
select the drmaa.jar file.

9. Click Add JAR/Folder to dismiss the file chooser dialog box.

Automating Grid Engine Functions Through DRMAA

2-66 Oracle Grid Engine User Guide

10. Click OK to dismiss the Library Management dialog box.

11. Select the DRMAA library and click Add Library to dismiss the Libraries
dialog box.

If your project uses an existing build file:

1. Select Java Sources Classpath in the left column.

2. Click Add JAR/Folder.

3. Browse to the $SGE_ROOT/lib directory in the file chooser dialog box and
select the drmaa.jar file.

4. Click Choose to dismiss the file chooser dialog box.

3. Click OK to dismiss the properties dialog box.

4. Verify that the DRMAA shared library is in the library search path. To run your
application from NetBeans, the DRMAA shared library file $SGE_
ROOT/lib/$SGE_ARCH/libdrmaa.so must be included in the library search
path (LD_LIBRARY_PATH on the Solaris Operating Environment and Linux). The
$SGE_ROOT/lib/$SGE_ARCH directory is not included automatically when you
set your environment using the settings.sh or settings.csh files. To set up
the path for the shared library, perform one of the following:

■ Set up your environment in the shell before launching NetBeans.

■ Add to the netbeans-root/etc/netbeans.conf file to set up the
environment, such as:

Setup environment for SGE
. $SGE_ROOT/$SGE_CELL/common/settings.sh
SGE_ARCH=`$SGE_ROOT/util/arch`
LD_LIBRARY_PATH=$SGE_ROOT/lib/$SGE_ARCH; export LD_LIBRARY_PATH

2.23.2.5 Running Your Java Application
To run your compiled DRMAA application, verify the following:

■ The $SGE_ROOT/lib/$SGE_ARCH directory must be included in the library
search path (LD_LIBRARY_PATH on the Solaris Operating Environment and
Linux). The $SGE_ROOT/lib/$SGE_ARCH directory is not included automatically
when you set your environment using the settings.sh or settings.csh files.

■ You must be logged into a machine that is a Grid Engine submit host. If the
machine is not a Grid Engine submit host, all DRMAA method calls will fail,
throwing a DrmCommunicationException.

2.23.2.6 Java Application Examples
The following examples illustrate some application interactions that use the Java
language bindings. You can find additional examples on the "How To" section of the
Grid Engine Community Site.

Example - Starting and Stopping a Session
The following code segment shows the most basic DRMAA Java language binding
program.

You must have a Session object to do anything with DRMAA. You get the Session
object from a SessionFactory. You get the SessionFactory from the static
SessionFactory.getFactory() method. The reason for this chain is that the
org.ggf.drmaa.* classes should be considered an immutable package to be

Automating Grid Engine Functions Through DRMAA

Using Grid Engine 2-67

used by every DRMAA Java language binding implementation. Because the package is
immutable, to load a specific implementation, the SessionFactory uses a system
property to find the implementation's session factory, which it then loads. That session
factory is then responsible for creating the session in whatever way it sees fit. It should
be noted that even though there is a session factory, only one session may exist at a
time.

On line 9, SessionFactory.getFactory() gets a session factory instance. On line
10, SessionFactory.getSession() gets the session instance. On line 13,
Session.init() initializes the session. "" is passed in as the contact string to create a
new session because no initialization arguments are needed.

Session.init() creates a session and starts an event client listener thread. The
session is used for organizing jobs submitted through DRMAA, and the thread is used
to receive updates from the queue master about the state of jobs and the system in
general. Once Session.init() has been called successfully, the calling application
must also call Session.exit() before terminating. If an application does not call
Session.exit() before terminating, the queue master might be left with a dead
event client handle, which can decrease queue master performance. Use the
Runtime.addShutdownHook() method to make sure Session.exit() gets called.

At the end of the program, on line 14, Session.exit() cleans up the session and
stops the event client listener thread. Most other DRMAA methods must be called
before Session.exit(). Some functions, like Session.getContact(), can be
called after Session.exit(), but these functions only provide general information.
Any function that performs an action, such as Session.runJob() or
Session.wait() must be called before Session.exit() is called. If such a
function is called after Session.exit() is called, it will throw a
NoActiveSessionException.

01: package com.sun.grid.drmaa.howto;
02:
03: import org.ggf.drmaa.DrmaaException;
04: import org.ggf.drmaa.Session;
05: import org.ggf.drmaa.SessionFactory;
06:
07: public class Howto1 {
08: public static void main(String[] args) {
09: SessionFactory factory = SessionFactory.getFactory();
10: Session session = factory.getSession();
11:
12: try {
13: session.init("");
14: session.exit();
15: } catch (DrmaaException e) {
16: System.out.println("Error: " + e.getMessage());
17: }
18: }
19: }

Example - Running a Job
The following code segment shows how to use the DRMAA Java language binding to
submit a job to Grid Engine. The beginning and end of this program are the same as in
the preceding example. The differences are on lines 16 through 24.

On line 16 , DRMAA allocates a JobTemplate. A JobTemplate is an object that is used
to store information about a job to be submitted. The same template can be reused for
multiple calls to Session.runJob() or Session.runBulkJobs().

Using the Accounting and Reporting Console

2-68 Oracle Grid Engine User Guide

On line 17, the RemoteCommand attribute is set. This attribute tells DRMAA where to
find the program to run. Its value is the path to the executable. The path can be relative
or absolute. If relative, the path is relative to the WorkingDirectory attribute, which
defaults to the user's home directory. For more information on DRMAA attributes, see
the DRMAA Javadoc. For this program to work, the script sleeper.sh must be in
your default path.

On line 18, the args attribute is set. This attribute tells DRMAA what arguments to
pass to the executable. For more information on DRMAA attributes, see the DRMAA
Javadoc.

On line 20, Session.runJob() submits the job. This method returns the ID
assigned to the job by the queue master. The job is now running as though submitted
by qsub. At this point, calling Session.exit() or terminating the program will
have no effect on the job.

To clean things up, the job template is deleted on line 24. This action frees the memory
DRMAA set aside for the job template, but has no effect on submitted jobs.

01: package com.sun.grid.drmaa.howto;
02:
03: import java.util.Collections;
04: import org.ggf.drmaa.DrmaaException;
05: import org.ggf.drmaa.JobTemplate;
06: import org.ggf.drmaa.Session;
07: import org.ggf.drmaa.SessionFactory;
08:
09: public class Howto2 {
10: public static void main(String[] args) {
11: SessionFactory factory = SessionFactory.getFactory();
12: Session session = factory.getSession();
13:
14: try {
15: session.init("");
16: JobTemplate jt = session.createJobTemplate();
17: jt.setRemoteCommand("sleeper.sh");
18: jt.setArgs(Collections.singletonList("5"));
19:
20: String id = session.runJob(jt);
21:
22: System.out.println("Your job has been submitted with id " + id);
23:
24: session.deleteJobTemplate(jt);
25: session.exit();
26: } catch (DrmaaException e) {
27: System.out.println("Error: " + e.getMessage());
28: }
29: }
30: }

2.24 Using the Accounting and Reporting Console
The optional Accounting and Reporting Console (ARCo) enables you to gather live
reporting data from the Grid Engine system and to store the data for historical analysis
in the reporting database, which is a standard SQL database.

Raw reporting data is generated by sge_qmaster. This raw data is stored in the
$SGE_ROOT/$SGE_CELL/common/reporting file. The dbwriter program reads
the raw data in the reporting file and writes it to the SQL reporting database, where it
can be accessed by ARCo.

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-69

ARCo supports the following SQL database systems:

■ PostgreSQL

■ Oracle

■ MySQL

The dbwriter provides functionality that helps you to manage your database size, by
specifying Derived Values and Deletion Rules.

ARCo also provides a web-based tool that contains a set of predefined SQL queries.
The predefined queries supplement the most frequent statistical inquiries. You can
modify these queries or create your own. To create your queries, you can use either the
Simple Query builder (suitable for SQL novices) or the Advanced Query generator.
You can display the data in a tabular, graphical, or pivotal form. You can export the
data in CVS or PDF form, or store the result for later viewing. You can also use the
arcorun utility to run ARCo queries in a batch mode. For information about arcorun,
see ARCo Configuration Files and Scripts for arcorun. For more information about
how to use ARCo, see How to Start ARCo. For information about how to install ARCo,
see Installing the Accounting and Reporting Console (ARCo).

If you have multiple clusters, one dbwriter installation per cluster is needed, but
only one Reporting installation is needed for all clusters.

2.25 Installing the Accounting and Reporting Console (ARCo)
To effectively install the Accounting and Reporting Console, perform the following
tasks in the order that they are listed:

2.25.1 Configuring the Database Server
You must properly install and configure the database server before you can install and
use ARCo. Specific database installation instructions and configuration settings differ
by database vendor.

2.25.2 How to Configure the ARCo Database on MySQL
1. Log in to the MySQL console as a superuser.

mysql -u root -p<password>

2. Create user arco_write and grant him privileges.

mysql> GRANT ALL on *.* to 'arco_write'@'<database_host>' identified by
'<password>' with GRANT OPTION;
mysql> GRANT ALL on *.* to 'arco_write'@'%' identified by '<password>' with
GRANT OPTION;

3. Exit the MySQL console.

mysql> \q

4. Log in to the MySQL console as arco_write user.

mysql -u arco_write -p<password>

5. Create the accounting and reporting database.

mysql> CREATE DATABASE <db_name>;

6. Create user arco_read and grant him privileges.

Installing the Accounting and Reporting Console (ARCo)

2-70 Oracle Grid Engine User Guide

mysql> GRANT SELECT,SHOW VIEW on <db_name>.* to 'arco_read'@'<database_host>'
identified by '<password>';
mysql> GRANT SELECT,SHOW VIEW on <db_name>.* to 'arco_read'@'%' identified by
'<password>';

7. Multi-cluster configuration. If you are configuring databases for multiple clusters,
repeat step 5. through 6., changing the db_name, or grant the user privileges on all
databases.

mysql> GRANT SELECT,SHOW VIEW on *.* to 'arco_read'@'<database_host>'
identified by '<password>';
mysql> GRANT SELECT,SHOW VIEW on *.* to 'arco_read'@'%' identified by
'<password>';

Since the same set of read and write users is used for all databases, no additional
steps are required to perform cross-cluster queries. See the example of a
cross-cluster query.

8. Install the dbwriter and reporting software. See How to Install dbwriter and How
to Install Reporting.

2.25.3 How to Configure the ARCo Database on PostgresSQL
1. Configure the PostgresSQL database server, as described in How to Configure the

PostgresSQL Server.

2. Log in as the database superuser, for example, postgres.

su - postgres

3. Create the database owner name and password. You will need this information
when you install the dbwriter and ARCo console as described in How to Install
dbwriter and How to Install Reporting.

> createuser -P arco_write
Enter password for new user:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

4. Create the accounting and reporting database.

> createdb -O arco_write arco
CREATE DATABASE

5. Create a database user for reading the database.

> createuser -P arco_read
Enter password for new user:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new user be allowed to create databases? (y/n) n

Note: The user 'arco_read'@'%' must be created. If the MySQL
database host is the same as the host Sun Java Web Console host
where ARCo is running, you also need to create the user 'arco_
read'@'database_host'.

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-71

Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

6. Grant arco_write permissions on default tablespace. The dbdefinition.xml
explicitly specifies tablespace name in table definition. The arco_write must
have permissions to create objects in the specified tablespace.

> psql

postgres=# GRANT CREATE ON TABLESPACE pg_default TO arco_write;

7. After you have set up the database, install the accounting and reporting software.
See How to Install dbwriter and How to Install Reporting.

2.25.4 How to Configure the ARCo Database with Multiple Schemas on PostgresSQL
1. Configure the PostgresSQL database server, as described in How to Configure the

PostgresSQL Server.

2. Log in as the database superuser, for example, postgres.

su - postgres

3. Create database user for writing.

> createuser -P arco_write_london

 Enter password for new user:
 Enter it again:
 Shall the new role be a superuser? (y/n) n
 Shall the new user be allowed to create databases? (y/n) y
 Shall the new user be allowed to create more new users? (y/n) n
 CREATE USER

4. Repeat step 2 for each cluster, changing the user name. For example, if you have a
second cluster called denver, you might use arco_write_denver.

5. Create a database user for reading.

> createuser -P arco_read_london
 Enter password for new user:
 Enter it again:
 Shall the new role be a superuser? (y/n) n
 Shall the new user be allowed to create databases? (y/n) n
 Shall the new user be allowed to create more new users? (y/n) n
 CREATE USER

Note: By using tablespaces, an administrator can control the disk
layout of a database installation and optimize performance. You can
find detailed information on the PostgreSQL tablespaces in the
Postgres documentation.

Note: The user, database, schema names are arbitrary. You are free
to use your own, these were chosen for the demonstrative purposes.

Installing the Accounting and Reporting Console (ARCo)

2-72 Oracle Grid Engine User Guide

6. Repeat step 4 for each cluster, changing the user name. For example, if you have a
second cluster called denver, you might use arco_write_denver.

7. Create the accounting and reporting database.

> createdb arco

CREATE DATABASE

8. Log in to the accounting and reporting database console.

> psql arco

 arco=#

9. Grant arco_write_london permissions on default tablespace. The
dbdefinition.xml explicitly specifies tablespace name in table definition. The
arco_write must have permissions to create objects in the specified tablespace.

arco=# GRANT CREATE ON TABLESPACE pg_default TO arco_write_london;

10. Repeat step 8 for each cluster, changing the user name.

11. Create schemas. The schema name should equal the owner name of the schema.
The owner of the schema is the arco_write_cluster user.

arco=# CREATE SCHEMA arco_write_london AUTHORIZATION arco_write_london;
CREATE SCHEMA

Schema arco_write_london owned by user arco_write_london was
created.

12. Repeat step 10 for each cluster, changing the schema name and owner name.

13. Grant appropriate privileges for users to schemas that they do not own. By
default, users cannot access any objects in schemas they do not own. To allow
other user access to the schema, the user needs to be granted USAGE privilege on
that schema. Grant arco_read_cluster the USAGE privilege on the arco_
write_cluster schema.

arco=# GRANT USAGE ON SCHEMA arco_write_london TO arco_read_london;
GRANT

14. Repeat step 12 for each cluster, changing the schema name and arco_read_
cluster name. For example, for a Denver cluster the schema name should be
arco_write_denver and the user should be arco_read_denver.

15. Set search path for ARCo users. In the reporting queries, tables are referred to by
unqualified names, which consist of just the table name. The system determines
which table is meant by following a search path, which is a list of schemas to look
in. The first matching table in the search path is taken to be the one wanted. If
there is no match in the search path, an error is reported, even if matching names

Note: By using tablespaces, an administrator can control the disk
layout of a database installation and optimize performance. You can
find detailed information on the PostgreSQL tablespaces in the
Postgres documentation available at
http://www.postgresql.org/docs/8.3/static/manage-ag-
tablespaces.html

http://www.postgresql.org/docs/8.3/static/manage-ag-tablespaces.html
http://www.postgresql.org/docs/8.3/static/manage-ag-tablespaces.html
http://www.postgresql.org/docs/8.3/static/manage-ag-tablespaces.html

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-73

exist in other schemas in the database. In a default setup the search path is: $user,
public command SHOW search_path; can be run to show search path for the
currently connected user. If the schemas in step 10. were created using the pattern
schema_name = user_name, then no additional steps are required for arco_
write_cluster users. The arco_read_cluster needs to be altered.

arco=# ALTER USER arco_read_london SET search_path=arco_write_london;
ALTER ROLE

16. Repeat step 14 for each cluster, changing the arco_read_cluster and the
search_path.

17. Verify that search_paths are set correctly.

arco=# SELECT * FROM pg_user;

Each arco_read_cluster user should have search_path in useconfig column
set to the appropriate arco_write_cluster. Each arco_write_cluster user
should have the useconfig field empty, signifying the default search_path.

18. Create the cross-cluster user

19. After you have set up the database, install the dbwriter and reporting software.
See How to Install dbwriter and How to Install Reporting.

2.25.5 How to Configure the MySQL Database Server
The Accounting and Reporting Console uses views. As a result, the console supports
MySQL database version 5.0.36 and higher. For more information on the MySQL
database software, see the MySQL documentation available at
http://dev.mysql.com/doc/index.html

2.25.5.1 MySQL Installation Tips
■ To start the MySQL server at boot time, copy support-files/mysql.server

to /etc/init.d and link it to both /etc/rc3.d/S99mysql and
/etc/rc0.d/K01mysql. If MySQL is not installed in /usr/local/mysql, edit
the file to change the basedir and datadir variables.

■ Add the full pathname of this directory to your PATH environment variable so
that your shell finds the MySQL programs properly.

2.25.5.2 Case Sensitivity in MySQL Database
In MySQL, databases correspond to directories within the data directory. Each table
within a database corresponds to at least one file within the database directory.
Because of this the case sensitivity of the underlying operating system determines the

Note: In order to perform cross-cluster queries, one user has to be
granted SELECT privileges an all the objects in all of the schemas and
access these objects using the fully-qualified name, for example
<schema_name>.<table_name>. For clarity, we will create a new
user. However, you can choose any of your existing users. You will
need to supply information for this user during the installation of the
reporting module. Perform steps 13 - 18 of How to Migrate a
PostgreSQL Database to a Different Schema. See also Creating
Cross-Cluster Queries.

Installing the Accounting and Reporting Console (ARCo)

2-74 Oracle Grid Engine User Guide

case sensitivity of database and table names. Therefore, database and table names are
case sensitive in most varieties of UNIX, and not case sensitive in Windows.

1. Download the appropriate MySQL software for your system from
http://www.mysql.com

The standard installation directory for UNIX systems is /usr/local/mysql. If
you install the software into a different directory, you have to change the settings
for the scripts provided in the package.

2. Create a symbolic link from the installation directory to MySQL.

ln -s $installation_directory/mysql-standard-5.0.26-solaris10-i386 mysql

The mysql directory contains several files and subdirectories.

3. Add a login user and group for mysqld.

groupadd mysql
useradd -g mysql mysql

4. Create the MySQL grant tables.

scripts/mysql_install_db --user=mysql

5. Change the ownership of program binaries to root and ownership of the data
directory to the user that you use to run mysqld.

chown -R root .
chown -R mysql data
chgrp -R mysql .

6. Configure MySQL server to use InnoDB as the default storage engine. MySQL
supports several storage engines that act as handlers for different table types.
MySQL storage engines include both, those that handle transaction-safe tables,
and those that handle non-transaction-safe tables. ARCo installation requires the
use of transaction-safe tables. Edit the my.cnf file and set the option

default_storage_engine=innodb

Configure other innodb properties such as innodb_data_home_dir, innodb_
data_file_path. For details on InnoDB storage configuration, see
http://dev.mysql.com/doc/refman/5.0/en/innodb-configuration.h
tml

7. Start the MySQL server.

bin/mysqld_safe --user=mysql &

8. Assign the root password.

./bin/mysqladmin -u root password 'new-password'
./bin/mysqladmin -u root -h ${hostname} password 'new-password'

9. Verify installation. Log in to the MySQL console as a superuser.

Note: ARCo is a Java web-based application and needs the Java
DataBase Connectivity (JDBC) driver for converting JDBC calls into
the network protocol used by the MySQL database. You can
download the JDBC driver from
http://www.mysql.com/products/connector

http://dev.mysql.com/doc/refman/5.0/en/innodb-configuration.html
http://dev.mysql.com/doc/refman/5.0/en/innodb-configuration.html

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-75

mysql -u root -p<password>

As a superuser perform these commands:

mysql> GRANT ALL on *.* to 'test'@'<database_host>' identified by '<password>'
with GRANT OPTION;
mysql> GRANT ALL on *.* to 'test'@'%' identified by '<password>' with GRANT
OPTION;

Log out and log in as the user test.

mysql> \q
mysql -u test -p<password>

As the user test perform these commands:

mysql> CREATE DATABASE test;
mysql> USE test;
mysql> CREATE TABLE sge_test (x integer, y varchar(50));
mysql> SHOW TABLE STATUS FROM test LIKE 'sge_test';

2.25.6 How to Configure the PostgresSQL Server
Before you configure the database server, you must download, compile and install the
PostgreSQL database software and create a user account to own the database
processes. Usually, this user is postgres. Add the PostgreSQL bin directory and
necessary LD_LIBRARY_PATH settings to your environment. You can find detailed
information on the PostgreSQL database in the Postgres documentation at
http://www.postgresql.org/docs/8.3/static/index.html.

1. If you are running Solaris, change the shared memory kernel parameter. The
default shared memory kernel parameter on Solaris is not enough to run Postgres.
According to the Postgres documentation, the kernel tunables on /etc/system
must be changed to the following:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=256
set shmsys:shminfo_shmseg=256
*** semaphores
set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semmsl=32

2. Create a home directory for the postgres user. In this example, the home directory
is /space/postgres/data.

% mkdir -p /space/postgres/data
% useradd -d /space/postgres postgres
% chown postgres /space/postgres/data
% su - postgres

3. Continue as described in the PostgreSQL documentation to set up a database.

> initdb -D /space/postgres/data

creating directory /space/postgres/data... ok

Note: The field 'Engine' should have a value InnoDB.

Installing the Accounting and Reporting Console (ARCo)

2-76 Oracle Grid Engine User Guide

creating directory /space/postgres/data/base... ok
creating directory /space/postgres/data/global... ok
creating directory /space/postgres/data/pg_xlog... ok
creating directory /space/postgres/data/pg_clog... ok
creating template1 database in /space/postgres/data/base/1... ok
creating configuration files... ok
initializing pg_shadow... ok
enabling unlimited row size for system tables... ok
initializing pg_depend... ok
creating system views... ok
loading pg_description... ok
creating conversions... ok
setting privileges on built-in objects... ok
vacuuming database template1... ok
copying template1 to template0... ok

Success. You can now start the database server using:
 postmaster -D /space/postgres/data
 or
 pg_ctl -D /space/postgres/data -l logfile start

4. Make the following changes to the pg_hba.conf file. This change permits
unrestricted and password free access to the database superuser postgres but
requires md5 encrypted passwords for all other database users. Replace
nnn.nnn.nnn with your subnet address without the trailing 0. You also can add
access rules on a per-host basis by adding similar lines with host IP addresses.

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local all postgres trust
local all all md5
IPv4-style local connections:
#host all all nnn.nnn.nnn.0 255.255.255.0 md5

5. Make the following changes to the postgresql.conf file, to enable TCP/IP
access from other hosts.

tcpip_socket = true
max_connections = 40 (increase if necessary)

6. Start the database. In this example, -i enables TCP/IP communication, while -S
is for silent mode, -D specifies the data directory.

> postmaster -S -i -D /space/postgres/data

7. Verify the installation. As the postgres user, try the following commands:

% su - postgres
> createuser -P test_user
Enter password for new user:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

Note: Ensure that the value of shared_buffers is at least twice the
value of max_connections. On PostgreSQL > 8.0 also modify the
value of listen_addresses.

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-77

> createdb -O test_user -E UNICODE test
CREATE DATABASE

8. Execute commands as the database super user.

> psql test
Welcome to psql 8.3, the PostgreSQL interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit
test=# create table test (x int, y text);
CREATE TABLE
test=# insert into test values (1, 'one');
INSERT 16982 1
test=# insert into test values (2, 'two');
INSERT 16983 1
test=# select * from test;
x | y
---+------
1 | one
2 | two
(2 rows)
test=# \q
 > psql -U test_user test
Password:
Welcome to psql 8.3, the PostgreSQL interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit
test=>

9. After you have successfully tested your database software, set up the PostgresSQL
database.

■ If you plan to support one grid cluster, see How to Configure the ARCo
Database on PostgresSQL.

■ If you plan to support more than one grid cluster, see How to Configure the
ARCo Database with Multiple Schemas on PostgresSQL.

10. After you have set up the database, install the accounting and reporting software.
See How to Install dbwriter and How to Install Reporting.

2.25.7 Using the Oracle Database
1. Ask your database administrator for an instance of an Oracle database. You need

two database users for this instance, arco_write and arco_read. The arco_
write user must be able to create or alter tables, views, and indexes. During the
installation of dbwriter, the arco_read user is granted SELECT privileges on
the objects owned by the arco_write user and SYNONYMS for these objects are
created in the schema of arco_read user. The SYNONYMS are created by arco_
read user, so this user needs to have privilege to create synonyms. Here is an
example how these users should be created on Oracle:

Note: The actual TABLESPACE and QUOTA values might differ.

Installing the Accounting and Reporting Console (ARCo)

2-78 Oracle Grid Engine User Guide

CREATE USER "ARCO_WRITE" PROFILE "DEFAULT" IDENTIFIED BY "<password>"
 DEFAULT TABLESPACE "USERS" TEMPORARY TABLESPACE "TEMP" QUOTA 100 M ON
"USERS" ACCOUNT UNLOCK;

CREATE USER "ARCO_READ" PROFILE "DEFAULT" IDENTIFIED BY "<password>"
 DEFAULT TABLESPACE "USERS" TEMPORARY TABLESPACE "TEMP" QUOTA 100 M ON
"USERS" ACCOUNT UNLOCK;

GRANT CREATE TABLE, CREATE VIEW, CREATE SESSION TO "ARCO_WRITE"
GRANT CREATE SYNONYM, CREATE SESSION TO "ARCO_READ"

2. Multi-cluster configuration. If you have multiple Grid Engine clusters, you will
need one pair of users (arco_write_cluster, arco_read_cluster) for each
cluster. You will need to install one dbwriter module per cluster, providing one
pair of users each time, but only one reporting installation for all the clusters is
necessary. During the installation of reporting module, you will provide
information for all your clusters (database schemas).

3. Cross-cluster queries. If you intend to perform cross-cluster queries, ask your
database administrator to create another user (multi_read) and grant him
SELECT privileges on all the objects from the other database schemas. You will
provide the information for this user during the installation of the reporting
module, and use it to connect to database when performing cross-cluster queries.
See the example of a cross-cluster query.

4. Ask your database administrator for the connection parameters to the database.

5. Install the dbwriter and reporting software. See How to Install dbwriter and
How to Install Reporting.

2.25.8 How to Add Authorized ARCo Users
During the installation of the ARCo reporting module, you are asked to enter a list of
users who should have write permissions to the ARCo system. Only those users are
allowed save modifications on ARCo.

1. Add users to the appropriate file. The list of authorized users is stored in $SGE_
ROOT/$SGE_CELL/arco/reporting/config.xml.

2. After editing this file, restart the Sun Java Web Console:

smcwebserver restart

2.25.9 How to Install dbwriter

Before You Begin
Prior to installing dbwriter, you must install and configure the following on your
ARCo system:

■ Grid Engine 6.2 software

■ Java Runtime Environment (JRE) version 1.5 or higher

■ Database software, as described in Configuring the ARCo Database Server

Steps
1. Extract the accounting and reporting software using either the tar method or the

pkgadd method.

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-79

■ If you use the tar method, type the following command:

cd $SGE_ROOT

Next, type the following command as one string, with a space between the
-dc and the path to the tar file:

gunzip -dc <path-to-location-of-file>/sge-6_2-arco.tar.gz | tar xvpf -

■ If you use the pkgadd method, type the following command and respond to
the script questions:

cd <cdrom_mount_point>/Sun_Grid_Engine_6_2/ARCo/Packages
pkgadd -d . SUNWsgeea

2. As the administrative user, set your environment variables.

■ If you are using a Bourne shell or Korn shell, type the following command:

$. $SGE_ROOT/default/common/settings.sh

■ If you are using a C shell, type the following command:

% source $SGE_ROOT/default/common/settings.csh

3. Change the global configuration to enable reporting. For details on how to enable
reporting, see About Reporting.

% qconf -mconf
<......>
reporting_params accounting=true \
 reporting=true flush_time=00:00:15 joblog=true \
 sharelog=00:00:00<......>

By default, report variables are not activated. You can use the qconf command to
enable statistics gathering on specific variables, as shown in the following
example:

% qconf -me global
hostname global
<......>
report_variables cpu,np_load_avg,mem_free,virtual_free
<......>

4. Install the dbwriter software. For a complete installation example, see Example
dbwriter Installation.

Note: You must install the dbwriter software as a root user.

Note: If you are upgrading from a Grid Engine version that was
released before version 6.2, you must run the installations script with
option -upd. This will remove existing RC scripts.

Note: If you run the installation script with option -nosmf, SMF
will not be used and you will have the option to create an RC script.

Installing the Accounting and Reporting Console (ARCo)

2-80 Oracle Grid Engine User Guide

5. Specify the location of your Grid Engine root directory ($SGE_ROOT). See lines 011
to 026 of the Example dbwriter Installation.

6. Specify the names of your Grid Engine cells. See lines 027 through 048 of the
Example dbwriter Installation. If you are not planning to support multiple grid
clusters with this ARCo installation, you can use the default cell.

7. Specify the location of your Java Software Development Kit. See lines 049 through
054 of the Example dbwriter Installation.

■ Java Software Development Kit version 1.5 or higher is required.

■ If your JAVA_HOME environment variable is set, the script will use that as a
default value.

8. Specify whether you want to use an existing dbwriter configuration file. See
lines 055 through 060 of the Example dbwriter Installation.

■ Because the configuration file differs between versions, you will be prompted
for any missing reporting database connection parameters.

■ If you choose to use the existing dbwriter configuration file, the installation
script will skip to step 13.

9. Specify the basic connection parameters for the reporting database. See lines 061
through 070 of the Example dbwriter Installation.

10. Specify the database user name and password (owner of the database objects). See
lines 071 through 074 of the Example dbwriter Installation. The database user
must have permissions to create objects in the database. The default user is arco_
write.

11. Specify the tablespace for tables and indexes. See lines 075 through 079 of the
Example dbwriter Installation. If you are using PostgreSQL or Oracle, you must
always specify the following tablespaces:

■ For PostgreSQL, the default tablespace is pg_default.

■ For Oracle, the default is typically USERS.

12. Specify the name of the database schema. See lines 080 through 081 of the Example
dbwriter Installation. If you are using PostgreSQL or Oracle, you must supply the
schema name. The following values apply:

Note: This step only appears if an existing dbwriter.conf is
detected in $SGE_ROOT/$SGE_CELL/common.

Note: The arco_write user must be granted the CREATE privilege
on this tablespace. If the arco_write user does not have sufficient
privileges, the following error message appears:

SEVERE: SQL error: ERROR: permission denied for tablespace pg_
default

To grant privileges, login as a superuser and issue the following
command in the database console:

GRANT CREATE ON TABLESPACE pg_default to arco_write;

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-81

■ For PostgreSQL, this value is normally public. For more information on
schemas, see How to Configure the ARCo Database with Multiple Schemas on
PostgresSQL and your database manual.

■ For Oracle, this value should be the database object's owner name (arco_
write).

13. Specify the database user name and password (the ARCo web application user).
See lines 082 through 090 of the Example dbwriter Installation. The ARCo web
application connects to the database using this user, the default is arco_read.
The user arco_read is granted SELECT privilege on the database tables and
views.

14. Locate the JDBC driver and test the database connection. See lines 091 through 102
of the Example dbwriter Installation.

■ If the corresponding JDBC driver is not found, the following error message
appears:

Error: jdbc driver org.postgresql.Driver
 not found in any jar file of directory
 /opt/sge62/dbwriter/lib

Copy a jdbc driver for your database into
this directory!

A JDBC driver is not provided with the distribution. If you need to install the
driver, do the following:

– Copy the appropriate JDBC driver into the $SGE_ROOT/dbwriter/lib
directory. Use the following drivers:

– After you copy the JAR file to the correct location, press RETURN, and the
search repeats.

■ If the database connection test fails, you can repeat the setup procedure.

15. Specify how often the dbwriter program should check the reporting file for new
data. See lines 103 and 106 of the Example dbwriter Installation.

16. Specify the spool directory. See line 107 the Example dbwriter Installation. The
dbwriter log and process id (pid) files are stored in this directory.

17. Specify the location of the file that contains the deletion and derived values rules.
See line 108 of the Example dbwriter Installation. By default the dbwriter.xml file
that contains the deletion and derived values rules is stored in $SGE_

Note: You will only be prompted to enter a password if you are
using Oracle. The installation connects to the database as this user to
create synonyms and thus the password for this user is also needed.

Database Drivers

PostgreSQL postgresql-8.3-6
03.jdbc3.jar

Oracle ojdbc14.jar

MySQL mysql-connector-
java-5.0.4-bin.j
ar

Installing the Accounting and Reporting Console (ARCo)

2-82 Oracle Grid Engine User Guide

ROOT/dbwriter/database/<database_type>/dbwriter.xml. If you move
this file to a different location, specify the path to this location. For more
information, see Derived Values and Deletion Rules.

18. Set the logging level for the dbwriter. See lines 109 through 111 of the Example
dbwriter Installation. The following levels are available:

■ WARNING is the least-detailed logging level.

■ FINEST is the most-detailed logging level.

19. Verify the settings. See lines 112 through 129 of the Example dbwriter Installation.
If the settings are not correct and you answer n, you are given the option to repeat
the setup. If any configuration changes are necessary, do the following:

■ Stop the dbwriter ($SGE_ROOT/$SGE_CELL/common/sgedbwriter
stop)

■ Edit the dbwriter.conf file or repeat the installation script

■ Start the dbwriter again ($SGE_ROOT/$SGE_
CELL/common/sgedbwriter start)

20. Check current database model. See lines 130 through 151 of the Example dbwriter
Installation. If a newer version of your current database model is necessary, an
upgrade is suggested. During the upgrade, the database objects and constraints
(tables, views, indexes, primary and foreign keys) are created or updated. Once
any necessary upgrades have been completed, the dbwriter installation creates
two files:

■ A start script $SGE_ROOT/$SGE_CELL/common/sgedbwriter

■ A configuration file $SGE_ROOT/$SGE_CELL/common/dbwriter.conf.

21. Specify whether dbwriter should start at boot time. See lines 152 through 161 of
the Example dbwriter Installation. If you choose not to start dbwriter
automatically, the SMF will not be used. If you choose not to start dbwriter
automatically and you ran the installations script with the option -nosmf, RC
scripts will not be created. To start the dbwriter manually, use one of the
following commands:

/etc/init.d/sgedbwriter start

$SGE_ROOT/$SGE_CELL/common/sgedbwriter start

2.25.10 Example dbwriter Installation
The following example shows a complete dbwriter installation. The steps in this
example are referred to from the dbwriter installation and configuration description
at How to Install dbwriter.

Step 4
001 % su
002 password:
003 # cd $SGE_ROOT/dbwriter
004 # ./inst_dbwriter
005
006 Welcome to the Grid Engine ARCo dbwriter module 007 installation
007 --
008 The installation will take approximately 5 minutes
009
010 Hit <RETURN> to continue >

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-83

Step 5
011 Checking $SGE_ROOT directory
012 ----------------------------
013
014 The Grid Engine root directory is:
015
016 $SGE_ROOT = /mydiskhome/myuser/sge62
017
018 If this directory is not correct (e.g. it may
019 contain an automounter
020 prefix) enter the correct path to this directory
021 or hit <RETURN>
022 to use default [/mydiskhome/myuser/sge62] >>
023
024 Your $SGE_ROOT directory: /mydiskhome/myuser/sge62
025
026 Hit <RETURN> to continue >>

Step 6
027 Grid Engine cells
028 -----------------
029
030 Grid Engine supports multiple cells.
031
032 If you are not planning to run multiple Grid Engine clusters or if you don't
033 know yet what is a Grid Engine cell it is safe to keep the default cell name
034
035 default
036
037 If you want to install multiple cells you can enter a cell name now.
038
039 The environment variable
040
041 $SGE_CELL=<your_cell_name>
042
043 will be set for all further Grid Engine commands.
044
045 Enter cell name [default] >>
046
047 Using cell >default<.
048 Hit <RETURN> to continue >>

Step 7
049 Java setup
050 ----------
051
052 ARCo needs at least java 1.5
053
054 Enter the path to your java installation [/usr/java] >>

Step 8
055 Dbwriter configuration file
056 ---------------------------
057
058 /mydiskhome/myuser/sge62/default/common/dbwriter.conf found.
059
060 Do you want to use the existing dbwriter configuration file? (y/n) [y] >>

Installing the Accounting and Reporting Console (ARCo)

2-84 Oracle Grid Engine User Guide

Step 9
061 Setup your database connection parameters
062 ---
063
064 Enter your database type (o = Oracle, p = PostgreSQL, m = MySQL) [] >> o
065
066 Enter the name of your oracle database host [] >> ge4
067
068 Enter the port of your oracle database [1521] >>
069
070 Enter the name of your oracle database [arco] >> arco

Step 10
071 Enter the name of the database user [arco_write] >> arco_write
072
073 Enter the password of the database user >>
074 Retype the password >>

Step 11
075 The arco_write must have permissions to create objects in the specified
tablespace.
076
077 Enter the name of TABLESPACE for tables [USERS] >>
078
079 Enter the name of TABLESPACE for indexes [USERS] >>

Step 12
080 Enter the name of the database schema [arco_write] >> arco_write
081

Step 13
082 The ARCo web application connects to the database with a user which has
restricted
083 access. The name of this database user is needed to grant him access to the
sge tables
084 and must be different from arco_write.
085 Enter the name of this database user [arco_read] >> arco_read
086
087 This user will also create the synonyms for the ARCo tables and views.
088
089 Enter the password of the database user >>
090 Retype the password >>

Step 14
091 Database connection test
092 ------------------------
093
094 Searching for the jdbc driver oracle.jdbc.driver.OracleDriver
095 in directory /mydiskhome/myuser/sge62/dbwriter/lib
096
097 OK, jdbc driver found
098
099 Should the connection to the database be tested? (y/n) [y] >>
100
101
102 Test database connection to 'jdbc:oracle:thin:@ge4:1521:orcl' ... OK

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-85

Step 15
103 Generic parameters
104 ------------------
105
106 Enter the interval between two dbwriter runs in seconds [60] >>

Step 16
107 Enter the path of the dbwriter spool directory
[/mydiskhome/myuser/sge62/default/spool/dbwriter]>>

Step 17
108 Enter the file with the derived value rules
[/mydiskhome/myuser/sge62/dbwriter/database/oracle/dbwriter.xml] >>

Step 18
109 The dbwriter can run with different debug levels
110 Possible values: WARNING INFO CONFIG FINE FINER FINEST
111 Enter the debug level of the dbwriter [INFO] >>

Step 19
112 All parameters are now collected
113 --------------------------------
114
115 SGE_ROOT=/mydiskhome/myuser/sge62
116 SGE_CELL=default
117 JAVA_HOME=/opt/jdk1.5.0 (1.5.0_13)
118 DB_URL=jdbc:oracle:thin:@ge4:1521:orcl
119 DB_USER=arco_write
120 READ_USER=arco_read
121 TABLESPACE=USERS
122 TABLESPACE_INDEX=USERS
123 DB_SCHEMA=arco_write
124 INTERVAL=60
125 SPOOL_DIR=/mydiskhome/myuser/sge62/default/spool/dbwriter
126 DERIVED_
FILE=/mydiskhome/myuser/sge62/dbwriter/database/oracle/dbwriter.xml
127 DEBUG_LEVEL=INFO
128
129 Are these settings correct? (y/n) [y] >>

Step 20
130 Database model installation/upgrade
131 -----------------------------------
132 Query database version ... no sge tables found
133 New version of the database model is needed
134
135 Should the database model be upgraded to version 8? (y/n) [y] >>
136
137 Upgrade to database model version 8 ... Install version 6.0 (id=0) -------
138 Create table sge_job
139 Create index sge_job_idx0
140 .
141 .
142 .
143 Update version table
144 committing changes
145 Version 6.2 (id=8) successfully installed

Installing the Accounting and Reporting Console (ARCo)

2-86 Oracle Grid Engine User Guide

146 OK
147 Create start script sgedbwriter in /mydiskhome/myuser/sge62/default/common
148
149 Create configuration file for dbwriter in
/mydiskhome/myuser/sge62/default/common
150
151 Hit <RETURN> to continue >>

Step 21
152 dbwriter startup script
153 -----------------------
154
155 Do you want to start dbwriter automatically at machine boot?
156 NOTE: If you select "n" SMF will be not used at all! (y/n) [y] >> n
157
158 Creating dbwriter spool directory
/mydiskhome/myuser/sge62/default/spool/dbwriter
159 starting dbwriter
160 dbwriter started (pid=4714)
161 Installation of dbwriter completed

2.25.11 How to Install Reporting

Before You Begin
Before you begin, verify that the Sun Java Web Console is installed as explained in
How to Install Sun Java Web Console.

Steps
1. Change directory to $SGE_ROOT/reporting.

cd $SGE_ROOT/reporting

2. Use the inst_reporting script to install the software. For a complete
installation example, see Example Reporting Installation.

./inst_reporting

Welcome to the Grid Engine ARCo reporting module installation
--
The installation will take approximately 5 minutes

Hit <RETURN> to continue >>

3. (Optional) Set the path to the Sun Java Web Console. If the installation script
cannot find the Sun Java Web Console commands smcwebserver, wcadmin, and
smwebapp, the script asks you to add the appropriate path to your $PATH
environment variable. The installation script looks in the following places to find
the commands:

1. The $PATH environment variable

2. Information contained in the packages for Linux or Solaris

Note: On some Linux platforms, you must set $JAVA_HOME to point
to Java version 1.5 or higher, prior to installing the reporting module.

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-87

3. The default path (/opt/sun/webconsole/bin/ for Linux and
/usr/share/webconsole/bin/ for Solaris)

4. Confirm the location of your Grid Engine root directory ($SGE_ROOT). See lines
011 through 025 of the Example Reporting Installation.

5. Specify the names of your Grid Engine cells. See lines 026 through 048 of the
Example Reporting Installation. If you are not planning to support multiple grid
clusters with this ARCo installation, you can use the default cell.

6. Specify the location of your Java Software Development Kit. See lines 049 through
055 of the Example Reporting Installation. Java Software Development Kit version
1.5 or higher is required. If your JAVA_HOME environment variable is set, the
script will use that as a default value.

7. Specify the spool directory where all queries and results will be stored. See lines
056 through 063 of the Example Reporting Installation. If this directory does not
exist, it will be created for you.

8. Specify the location of your Grid Engine root directory ($SGE_ROOT). See lines 011
through 026 of the Example dbwriter Installation.

9. Specify the parameters for the database connection. See lines 064 through 074 of
the Example Reporting Installation. If you plan to support more than one grid
cluster with this ARCo instance, the next several steps are repeated for each
cluster.

10. Specify an accounting and reporting database user name and password. See lines
075 through 079 of the Example Reporting Installation.

11. Identify the database schema for ARCo console. See lines 080 through 081 of the
Example Reporting Installation. The name of the database schema depends on
your database. For a PostgresSQL database, the database schema name should be
public. For Oracle, the name of the database schema should the same as the name
of the user account which is used by the dbwriter (arco_write).

12. Identify the name of your grid cluster. See lines 082 through 084 of the Example
Reporting Installation. You should use the same name as $SGE_CLUSTER_NAME.

13. Confirm cluster database parameters and specify whether to support additional
grid clusters. See lines 097 through 106 of the Example Reporting Installation. If
you answer yes, the previous several steps are repeated for each cluster.

14. Enter the login names of users who are allowed to store the queries and results.
See lines 107 through 112 of the Example Reporting Installation.

15. Verify the information. See lines 113 through 119 of the Example Reporting
Installation.

Note: For security reasons, the database user for accounting and
reporting should have only read permission (SELECT) for the
database tables. Do not use the same database user that was granted
CREATE permission on ARCo database.

Note: After installation, you can add or delete authorized users by
editing the config.xml file. See How to Add Authorized ARCo
Users.

Installing the Accounting and Reporting Console (ARCo)

2-88 Oracle Grid Engine User Guide

16. If a previous version of ARCo is installed, you will be asked to remove it: See lines
120 through 131 of the Example Reporting Installation.

17. Install pre-defined queries. See lines 132 through 157 of the Example Reporting
Installation. If the query directory does not exist, it will be created. The example
queries will be installed in the spool directory you have specified. Default
/var/spool/arco/queries. Existing queries will be replaced if you choose Y.

18. Confirm that reporting module is set up. See lines 158 through 176 of the Example
Reporting Installation.

19. Confirm that reporting module is registered to the web console and the console
starts. See lines 177 through 198 of the Example Reporting Installation. You should
see a series of messages that tell you that the ARCo has installed successfully.

20. Check the log file for error or warning messages.

more /var/log/webconsole/console/console_debug_log

The accounting and reporting logs are written to the
/var/log/webconsole/console/console_debug_log file. The default log
level is INFO, but you can modify the log level from the command line:

wcadmin add -p -a reporting arco_logging_level=FINE

The new log takes effect the next time the console is started or restarted. The
possible log levels are WARNING, INFO, FINE, FINER and FINEST.

21. Connect to the Sun Java Web Console by accessing the following URL in your
browser and replace the hostname with the name of your master host.

https://hostname:6789

22. Login with your UNIX account.

23. Select the Grid Engine Accounting and Reporting Console.

2.25.12 Example Reporting Installation
The following example shows a complete ARCo reporting installation. The steps in
this example are referred to from the ARCo reporting installation and configuration
description at How to Install Reporting.

Step 2
001 # cd $SGE_ROOT/reporting
002
003 # ./inst_reporting
004
005 Welcome to the Grid Engine ARCo reporting module installation
006 ---
007 The installation will take approximately 5 minutes
008
009 Hit <RETURN> to continue >>
010

Step 3
011 Checking $SGE_ROOT directory
012 ----------------------------
013
014 The Grid Engine root directory is:
015

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-89

016 $SGE_ROOT = /mydiskhome/myuser/sge62
017
018 If this directory is not correct (e.g. it may contain an automounter
019 prefix) enter the correct path to this directory or hit <RETURN>
020 to use default [/mydiskhome/myuser/sge62] >>
021
022 Your $SGE_ROOT directory: /mydiskhome/myuser/sge62
023
024 Hit <RETURN> to continue >>
025

Step 4
026 Grid Engine cells
027 -----------------
028
029 Grid Engine supports multiple cells.
030
031 If you are not planning to run multiple Grid Engine clusters or if you don't
032 know yet what is a Grid Engine cell it is safe to keep the default cell name
033
034 default
035
036 If you want to install multiple cells you can enter a cell name now.
037
038 The environment variable
039
040 $SGE_CELL=<your_cell_name>
041
042 will be set for all further Grid Engine commands.
043
044 Enter cell name [default] >>
045
046 Using cell >default<.
047 Hit <RETURN> to continue >>
048

Step 5
049 Java setup
050 ----------
051
052 We need at least java 1.5
053
054 Enter the path to your java installation [/myhomedisk/SW/jdk1.5.0/sol-amd64]
>>
055

Step 6
056 Spool directory
057 ---------------
058
059 In the spool directory the Grid Engine reporting module will
060 store all queries and results
061
062 Enter the path to the spool directory [/var/spool/arco] >>
063

Step 7
064 Cluster Database Setup

Installing the Accounting and Reporting Console (ARCo)

2-90 Oracle Grid Engine User Guide

065 ----------------------
066
067 Enter your database type (o = Oracle, p = PostgreSQL, m = MySQL) [p] >>
068
069 Enter the name of your postgresql database host [] >> ge7
070
071 Enter the port of your postgresql database [5432] >>
072
073 Enter the name of your postgresql database [arco] >>
074

Step 8
075 Enter the name of the database user [arco_read] >>
076
077 Enter the password of the database user >>
078 Retype the password >>
079

Step 9
080 Enter the name of the database schema [public] >>
081

Step 10
082 Enter the name of your cluster
083 (it is recommended to use the same name as $SGE_CLUSTER_NAME) [ge7:arco:arco_
read] >>
084

Step 11
085 Database connection test
086 ------------------------
087
088 Searching for the jdbc driver org.postgresql.Driver
089 in directory /net/gefs.czech/ws/jo195647/sge62/reporting/WEB-INF/lib
090
091 OK, jdbc driver found
092
093 Should the connection to the database be tested? (y/n) [y] >>
094
095 Test database connection to 'jdbc:postgresql://ge7:5432/arco' ... OK
096

Step 12
097 DB parameters are now collected
098 -------------------------------
099 CLUSTER_NAME=ge7:arco:arco_read
100 DB_URL=jdbc:postgresql://ge7:5432/arco
101 DB_USER=arco_read
102
103 Are these settings correct? (y/n) [y] >>
104
105 Do you want to add another cluster? (y/n) [n] >>
106

== If yes is answered, steps starting with Cluster Database Setup are repeated, so info
for next cluster can be entered.

Installing the Accounting and Reporting Console (ARCo)

Using Grid Engine 2-91

Step 13
107 Configure users with write access
108 ---------------------------------
109
110 Users: myuser1
111 Enter a login name of a user (Press enter to finish) >>
112

Step 14
113 All parameters are now collected
114 --------------------------------
115 SPOOL_DIR=/var/spool/arco
116 APPL_USERS=jo195647
117
118 Are this settings correct? (y/n) [y] >>
119

Step 15
120 Grid Engine reporting module already registered at Sun Java Web Console
121 ---
122
123 The Grid Engine reporting modules can only be installed
124 if no previous version is registered.
125
126 Should the Grid Engine reporting module com.sun.grid.arco_6.2-Maintrunk be
unregistered? (y/n) [y] >>
127
128 The reporting web application has been successfully undeployed.
129
130 Hit <RETURN> to continue >>
131

Step 16
132 Install predefined queries
133 --------------------------
134
135 query directory /var/spool/arco/queries already exists
136 Copy examples queries into /var/spool/arco/queries
137 Query AR_Attributes.xml already exists. Overwrite? (y = yes, n = no, Y =
yes to all, N = no to all) [n] >> Y
138 Copy query AR_Attributes.xml ... OK
139 Copy query AR_Log.xml ... OK
140 Copy query AR_Reserved_Time_Usage.xml ... OK
141 Copy query AR_by_User.xml ... OK
142 Copy query Accounting_per_AR.xml ... OK
143 Copy query Accounting_per_Department.xml ... OK
144 Copy query Accounting_per_Project.xml ... OK
145 Copy query Accounting_per_User.xml ... OK
146 Copy query Average_Job_Turnaround_Time.xml ... OK
147 Copy query Average_Job_Wait_Time.xml ... OK
148 Copy query DBWriter_Performance.xml ... OK
149 Copy query Host_Load.xml ... OK
150 Copy query Job_Log.xml ... OK
151 Copy query Number_of_Jobs_Completed_per_AR.xml ... OK
152 Copy query Number_of_Jobs_completed.xml ... OK
153 Copy query Queue_Consumables.xml ... OK
154 Copy query Statistic_History.xml ... OK
155 Copy query Statistics.xml ... OK

Installing the Accounting and Reporting Console (ARCo)

2-92 Oracle Grid Engine User Guide

156 Copy query Wallclock_time.xml ... OK
157

== if 'n' or 'N' is selected the queries will not be updated (not recommended)

Step 17
158 ARCo reporting module setup
159 ---------------------------
160
161 Found a previous installed version of the ARCo reporting
162 modules at /ws/jo195647/sge62/default/arco
163
164 Remove directory /ws/jo195647/sge62/default/arco/reporting? (y/n) [y] >>
165
166 directory /ws/jo195647/sge62/default/arco/reporting removed
167 Copying ARCo reporting file into /ws/jo195647/sge62/default/arco/reporting
168
169 Setting up ARCo reporting configuration file. After registration of
170 the ARCo reporting module at the Sun Java Web Console you can find
171 this file at
172
173 /ws/jo195647/sge62/default/arco/reporting/config.xml
174
175 Hit <RETURN> to continue >>
176

Step 18
177 Importing Sun Java Web Console 3.0 files into the
/ws/jo195647/sge62/default/arco/reporting
178 ---
179 Imported files to /ws/jo195647/sge62/default/arco/reporting
180 Created product images in /ws/jo195647/sge62/default/arco/reporting/com_sun_
web_ui/images
181
182 Hit <RETURN> to continue >>
183
184 Registering the Grid Engine reporting module in the Sun Java Web Console
185 --
186 The reporting web application has been successfully deployed.
187 Set 1 properties for the com.sun.grid.arco_6.2-Maintrunk application.
188 Set 1 properties for the com.sun.grid.arco_6.2-Maintrunk application.
189 Set 1 properties for the com.sun.grid.arco_6.2-Maintrunk application.
190 Creating the TOC file ... OK
191
192 Hit <RETURN> to continue >>
193
194 Restarting Sun Java Web Console
195 -------------------------------
196 Restarting Sun Java(TM) Web Console Version 3.0.2 ...
197 The console is running
198 Grid Engine ARCo reporting successfully installed

2.25.13 How to Install Sun Java Web Console

Note: Sun Java Web Console 3.0 is installed automatically on Solaris
10 Update 3 or later. To install Sun Java Web Console on an older
version of the Solaris operating system, follow these steps.

Planning the ARCo Installation

Using Grid Engine 2-93

1. Check whether Sun Java Web Console is already available on your system, as is
usually the case for the Solaris 10 software and on newer Solaris 9 versions. As
root, you can check using the following command:

smcwebserver -V
Version 3.0.2

2. If you need to install the console, extract the web console package under a
temporary directory.

cd /tmp
umask 022
mkdir swc
cd swc
tar xvf cdrom_mount_point/N1_Grid_Engine_6_2/SunWebConsole/tar/swc_sparc_
3.0.2.tar

3. If you are running SuSE 9.0, create symbolic links for each of the /etc/rc#.d
directories.

ln -s /etc/rc.d/rc0.d /etc/rc0.d
ln -s /etc/rc.d/rc1.d /etc/rc1.d
ln -s /etc/rc.d/rc2.d /etc/rc2.d

4. Run the Sun Java Web Console setup script.

./setup -n
<....>
Installation complete.

Starting Sun(TM) Web Console Version 3.0.2...
See /var/log/webconsole/console/console_debug_log for server logging
information

The web console is installed but not started until after the ARCo console
installation. Once the console is installed, you can use the following commands to
stop, start, or restart the console at any time:

/usr/sbin/smcwebserver start
/usr/sbin/smcwebserver stop
/usr/sbin/smcwebserver restart

For more information on the Java Web Console, see the official product
documentation.

2.26 Planning the ARCo Installation
Before you install the ARCo software, you must plan how to achieve the results that fit
your environment. This section helps you make the decisions that affect the rest of the
procedure. Write down your installation plan in a table similar to the following
example.

Note: ARCo for Grid Engine 6.2 software requires Sun Java Web
Console 3.0.x.

Planning the ARCo Installation

2-94 Oracle Grid Engine User Guide

2.26.1 Supported Operating Platforms
■ Solaris 11, 10, 9, and 8 Operating Systems (SPARC Platform Edition)

■ Solaris 9 Operating System (x86 Platform Edition)

■ Solaris 11 and 10 Operating Systems (x64 Platform Edition)

■ Linux x64, kernel 2.4 and higher, glibc >= 2.3.2

■ Linux x86, kernel 2.4 and higher, glibc >= 2.3.2

2.26.2 Required Software
For ARCo software to function correctly, you must already have installed the
following on your ARCo system:

■ Grid Engine 6.2 software

■ Java Standard Edition 5 and higher

■ One of the following database software versions

■ PostgresSQL 8.0 through 8.3

■ MySQL 5.0.36 and higher

■ Oracle 9i, 10g, or 11g

■ Sun Java Web Console version 3.0 and higher

Refer to Sun Java Web Console Release Notes for detailed system requirements.

The following browsers are supported:

■ Netscape 6.2 and above

■ Mozilla 1.4 and above

■ Internet Explorer 5.5 and above

■ Firefox 1.0 and above

Sun Java Web Console supports Java Standard Edition 5 and 6.

Parameter Value

sge-root directory __________________

Database software
vendor

Database user (read
access)

Database user (write
access)

Multi-cluster
support?

Note: Sun Java Web Console 3.0 is installed automatically with
Solaris 10 Update 3 or later. If you need to install Sun Java Web
Console, see How to Install Sun Java Web Console.

Planning the ARCo Installation

Using Grid Engine 2-95

2.26.3 Disk Space Recommendations

* Your specific database server configuration settings depend on the following:

■ Cluster size and number of jobs running on cluster

■ Setting of joblog in reporting_params (qconf -mconf)

■ Configured report_variables (qconf -me global)

■ Configuration of dbwriter deletion rules (<sge_
root>/dbwriter/database/<database_type>/dbwriter.xml)

For guidelines about determining specific database needs, see Space Requirements for
the ARCo Database on the Open Grid Engine site.

2.26.4 Multi-Cluster Support Overview
If you have multiple Grid Engine clusters, you can log in to one instance of ARCo from
which you can run reports on all ARCo instances that use the same database vendor
and structure. With the ARCo multi-cluster support, one dbwriter instance per
qmaster is still required, but a single reporting installation is sufficient for all
qmasters. During the reporting installation, you can supply separate database
parameters, such as database name, database user, database host, database password
for each cluster, the only condition being that databases are of the same vendor.
Database connections are configured from these parameters, which enables you to run
the same queries on separate clusters, while logged in to the single instance of the
ARCo reporting.

For the multi-cluster database configuration, you can use any of these database setups:

■ A single database with multiple schemas (one per each cluster) on a single DBMS

■ Separate databases (one per each cluster) on a single DBMS

■ Separate databases on separate DBMS (one per each cluster)

If you are not interested in cross-cluster queries, you can choose any of these setups.
However, to run cross-cluster queries, you must configure a single database with
multiple schemas (one per each cluster) on a single DBMS.

2.26.5 Database Configuration Illustrations
The following diagrams illustrate the supported database configurations. Additional
steps, described in, are necessary to configure a PostgresSQL database with separate
schemas.

If you want to run cross-cluster queries, use the configuration depicted in Figure 2–14.
Otherwise, you can choose either of the other configurations, although Figure 2–13 is
slightly preferred.

Table 2–1 Recommended Disk Requirements

Component Space Needed

ARCo software 100 MB

Sun Java Web Console -

Database server memory 250 to 750 MB *

Database server disk space 10 GB *

Planning the ARCo Installation

2-96 Oracle Grid Engine User Guide

In Figure 2–12, each database is created on a separate Database Management Server
(DBMS).

Figure 2–12 Separate Databases on Separate DBMS

In Figure 2–13, Databases of different names are created on the same DBMS. Only two
users are required to access all ARCo databases on the same server, arco_read and
arco_write.

Figure 2–13 Separate Databases on a Single DBMS

Planning the ARCo Installation

Using Grid Engine 2-97

In Figure 2–14, only one database is created with multiple schemas (one per each
cluster). There are two users for each schema, arco_write_cluster and arco_
read_cluster. The name of the schema should be the same as the name of the
owner (arco_write_cluster).

Figure 2–14 One Database With Multiple Schemas on a Single DBMS

2.26.6 Schema Overview
A database cluster contains one or more named databases. Any given client
connection to the server can access only the data in a single database, the one specified
in the connection request. A database can contain one or more named schemas, which
in turn contain tables. Schemas also contain other objects, such as views, aliases,
indexes and functions. The same object name can be used in different schemas without
conflict; for example, both schemas arco_write_denver and arco_write_london
may contain the sge_job table.

Unlike databases, schemas are not rigidly separated: a user may access objects in any
of the schemas in the database to which the user is connected, if the user has privileges
to do so. For user to access objects from a different schema, he needs to be granted
SELECT privilege on the objects and access them using the fully-qualified name, for
example schema_name.table_name. A user does not need to use the fully-qualified
names if accessing objects in its own schema.

Each database handles the schema notion differently.

■ Oracle - In Oracle, one schema is created automatically for each user. Because
there is a 1-to-1 relationship between a user and a schema, these two terms are
often used interchangeably. To perform cross-cluster queries, one designated
database user (for example, multi_read) needs to be granted SELECT privileges
on all the objects (tables, views) from all the other schemas. See Using the Oracle
Database.

■ PostgreSQL - In PostgreSQL when a table is created without explicitly specifying
schema name, it is automatically put into the default schema called 'public'. Each

How to Start ARCo

2-98 Oracle Grid Engine User Guide

PostgreSQL database contains such a schema and all users have ALL privilege on
that schema. The dbdefinition.xml for Postgres allows for explicit
specification of schema for table definition. Detailed instructions, described in
How to Configure the ARCo Database with Multiple Schemas on PostgresSQL.
For more information on schemas, see
http://www.postgresql.org/docs/8.2/static/ddl-schemas.html

■ MySQL - MySQL does not support schemas; the term schema is analogous to
database. Command CREATE SCHEMA is the same as CREATE DATABASE. The
implication is that a user can access any object from any database on the same
DBMS using a client connection to any single database. If you configure MySQL
multiple databases using just one pair of users (arco_write, arco_read) and
grant the privileges as described in How to Configure the ARCo Database on
MySQL, you can perform cross_cluster queries. You must use the
fully-qualified names when accessing objects, for example database_
name.table_name.

2.27 How to Start ARCo
The accounting and reporting console is installed separately from the Grid Engine
software. For details on the installation process, see Installing the Accounting and
Reporting Console (ARCo). In addition, you must enable your Grid Engine system to
collect reporting information. For details about how to enable the collection of
reporting data, see About Reporting.

2.27.1 How to Start the Accounting and Reporting Console
1. From your web browser, type the URL to connect to the Sun Java Web Console.

In the following example, hostname is the host on which the accounting and
reporting software has been installed.

https://<hostname>:6789
2. Log in to your UNIX account.

3. In the Java Web Console main page, select the Accounting and Reporting
application.

The Overview page appears. The Query List shows a list of predefined ARCo queries
on the selected grid cluster. From the Overview page, you can perform the following
tasks:

■ To view details about a defined query, click the query Name in the Query List.

■ To view the results of any queries that you have run on this cluster, click the
Results tab.

■ To create a new query, click the New Simple button.

■ To create a query by editing the SQL directly, click the New Advanced button.

■ To run a defined query, click the circle next to the query name that you want to
run, then click the Run button.

Tip: You can also use a link similar to the following example to go
directly to the ARCo application from within your web browser:
https://hostname:6789/console/login/Login?redirect_
url=%22/reporting/arcomodule/Index%22.

How to Start ARCo

Using Grid Engine 2-99

■ To edit a defined query, click the circle next to the query name that you want to
run, then click the Edit button.

■ To view information about or run statistics on a different grid cluster, select the
cluster from the Cluster menu.

2.27.2 Creating and Modifying Simple Queries
The query defines the data set that you want to retrieve. You can create simple queries
for which the system formulates the SQL query string. If you know SQL and you want
to write the query yourself, you can create advanced queries as described in Creating
and Modifying Advanced Queries.

How to Create a Simple Query
1. In the Query List on the ARCo Overview page, click the New Simple button.

The Simple Query screen appears showing common information, such as the
query category and description. This information is optional.

Figure 2–15 Simple Query

2. To define the query, click the Simple Query tab.

3. To choose a database table or view to predefine your query, select from the
Table/View list.

Note: For detailed information about these tasks, see the online help
from within the ARCo console.

Tip: To define how to display the results of the query, go to the View
tab.

How to Start ARCo

2-100 Oracle Grid Engine User Guide

Figure 2–16 Simple Query Definition

4. To define the fields on which the query is to run, click the Add button in the Fields
section.

■ The Function enables you to apply either an aggregate function or a numeric
operator to the specified field. Supported values are:

■ The Name is the name of a column in the selected table or view.

Supported
Values Description

VALUE Display the current value of
the field

SUM Accumulate the values of
the field

COUNT Count the number of values
of the field

MIN Get the minimum value of
the field

MAX Get the maximum value of
the field

AVG Get the average value of the
field

Note: Numeric functions only apply to numeric field values and
must be used with a Parameter.

How to Start ARCo

Using Grid Engine 2-101

■ The Parameter is applied when you choose a numeric operator in the
Function.

■ The Username enables you to provide a more meaningful name to display in
the query result.

■ Sort enables you to define the sorting order for the field.

5. (Optional) Define Filters.

You must specify at least one field before you can define filters.

■ AND/OR is needed for any filter except the first. This setting provides the
logical connection to the previous filter condition.

■ The Field Name is the name of the field to be filtered. If a field has a
user-defined name, that name is shown in the selection list. Otherwise, a
generated name is shown.

■ The Condition field specifies the operators that are used to filter the values
from the database.

■ The Parameter field contains a value that is used for filtering the values
returned by the query.

■ The Parameter field contains a value that is used for filtering the values
returned by the query.

■ Active enables or disables the filter.

The following table lists the supported operators.

Condition Symbol Description
Number of
Parameters

Parameter
Usage

Equal = Filters the fields that equal
the Parameter

1 NA

Not Equal <>, != Filters the fields that do
not equal the Parameter

1 NA

Less Than < Filters the fields that are
less than the Parameter

1 NA

Less Than or
Equal

<= Filters the fields that are
less than or equal to the
Parameter

1 NA

Greater Than > Filters the fields that are
greater than the Parameter

1 NA

Greater Than
or Equal

>= Filters the fields that are
greater than or equal to the
Parameter

1 NA

Null NA Filters the fields that are
null

0 NA

Not Null NA Filters the fields that are
not null

0 NA

Between NA Filters the fields that are
within the specified
interval

2 1 AND 100

In NA Filters the fields that ar
equal to an element of a
specified list

1 or more dep-234,
dep-bio,
dep-phy

How to Start ARCo

2-102 Oracle Grid Engine User Guide

6. (Optional) Limit the number of rows to be returned.

Type the number of rows you want to return in the Row Limit textbox. If the result
contains more rows, only the specified number are displayed.

7. Save or run the query.

To save the query, click Save or Save As.

To run the query, click Run.

How to Modify a Simple Query
1. Select a query from the list on the Query List screen.

2. Click Edit.

The selected Simple Query screen displays.

3. Make changes to the Simple Query screen by navigating through the tabs and
making your changes as you would when creating a simple query.

4. Save or run the changed query.

To save the query, click Save or Save As.

To run the query, click Run.

2.27.3 Creating and Modifying Advanced Queries

How to Create an Advanced Query
1. In the Query List on the ARCo Overview page, click the New Advanced button.

The Advanced Query screen appears showing common information, such as the
query category and description. This information is optional.

2. To define the query, click the Simple Query tab.

Like NA Filters the fields that
match the specified
pattern

1 % allows to
match any
string on any
length
(including
zero length)

%bob% will
return the only
the fields
containing the
string bob

_ allows to
match on a
single
character

Note: You must have previous experience writing SQL queries to
use this feature of the accounting and reporting console.

Condition Symbol Description
Number of
Parameters

Parameter
Usage

How to Start ARCo

Using Grid Engine 2-103

3. Type your SQL query in the field.

Figure 2–17 Advanced Query Definition

4. Save or run the query.

To save the query, click Save or Save As.

To run the query, click Run.

How to Edit an Advanced Query
1. Select a query from the list on the Query List screen.

2. Click Edit.

A completed version of the Advanced Query screen displays.

3. Make changes to the SQL query.

4. Save or run the changed query.

To save the query, click Save or Save As.

To run the query, click Run.

Latebindings for Advanced Queries
The syntax for the latebindings in advanced queries is:

LATEBINDING { <column>;<operator>;<default value> }

 <column> name of the latebinding
 <operator> SQL operator (e.g. = < > in ..)
 <value> default value (e.g. 'localhost')

Example – Latebindings
select * from sge_host where LATEBINDING {h_hostname; like; a%}
select * from sge_host where LATEBINDING {h_hostname; in; ('localhost',

Tip: To define how to display the results of the query, go to the View
tab.

How to Start ARCo

2-104 Oracle Grid Engine User Guide

'foo.bar')}

2.27.4 Configuring the Query Results View
By default, query results display a database table that contains all the requested
information. For Simple and Advanced queries, you can add a pie chart, bar chart, or
line diagram to that table. You can also change the view of the database table itself.

How to Configure the Query Results View
1. To change the view configuration for a query, click the View tab in either the

Simple Query or Advanced Query screen.

To create a view for a saved query:

■ Choose the query from the Query List on the Overview page.

■ Click the Edit button.

■ Click the View tab.

The current view configuration for the selected query displays.

Figure 2–18 View Configuration

2. Choose whether to display additional query details.

In the View Configuration section, you can show or hide the following query
details:

■ The query description that you entered in the Common tab.

■ The filter conditions or parameters that you defined in the Simple Query.

■ The SQL statement that defines the query, either as assembled by the Simple
Query or as you typed it in the SQL tab in the Advanced Query.

3. To configure the table display, click Add Table.

Choose the columns that you need to display under Name and adjust their Type
and Format. The order in which the columns are added will be the order in which
the columns are presented. The selections that you make for this report do not
affect the filters applied to the data.

Note: For some queries, only a subset of the possible view selections
are meaningful. For example, if you have only two columns to select
from, pivot makes no sense.

How to Start ARCo

Using Grid Engine 2-105

Figure 2–19 Database Table

4. To add a pivot table, click Add Pivot.

Add the pivot column, row, and data entries. Then choose the column Name,
Type, and Format. To shift an entry to a different pivot type, select it under Pivot
Type.

Figure 2–20 View Pivot Table

5. To add a graphical view of your data, click Add Graphic.

How to Start ARCo

2-106 Oracle Grid Engine User Guide

Figure 2–21 Graphical Presentation of Data

6. Select the diagram type for your graphic.

You can attach the query data to bar, pie, or line diagram types. The following
chart types are available from the Diagram Type menu:

■ Bar Chart

■ Bar Chart (3D

■ Bar Chart Stacked

■ Bar Chart Stacked (3d)

■ Pie Chart, Pie Chart 3D

■ Line Chart

■ Line Chart Stacked Line

You can choose to display Bar and Pie types with a 3D effect. You can choose
to draw stacked Bar and Line diagrams with values on the y-axis summarized.

7. Select the value to display on the X-axis.

8. Decide whether to define the data series based on rows or columns.

■ Series from columns: All column values are added to a series. The name of the
series is the column header.

■ Series from rows: All column values define the series. The names of the series
is defined by the values of the label column. The values of the series are
defined by the value column.

9. Choose specific details as appropriate for your diagram type.

Because graphic displays are somewhat complex to define, you might find it more
useful to look at some examples.

10. Click Save or Save As to save your View configuration to the query.

11. Click Run to run your query.

How to Start ARCo

Using Grid Engine 2-107

2.27.5 Examples for Defining Graphical Views
The following two examples show the default view first, followed by the View
selections, followed by the graphical result.

Example 1 – Accounting per Department Pie Chart
The query “Accounting per Department” results in a table with the columns: time,
department, and cpu.

Figure 2–22 Accounting per Department Database Table

To display the result in a pie chart, select the following configuration:

Figure 2–23 Example of Graphical Presentation

The result will be multiple pie charts, similar to those shown in this figure.

How to Start ARCo

2-108 Oracle Grid Engine User Guide

Figure 2–24 Example of Multiple Pie Charts

Example 2 – CPU, Input/Output, and Memory Usage Over All Departments Bar
Chart
A query summarizes CPU, IO, and Mem usage over all departments:

Figure 2–25 Example Database Table for Usage

To display the results in a bar chart, select the following configuration:

ARCo Configuration Files and Scripts

Using Grid Engine 2-109

Figure 2–26 Example of Graphical Presentation of Bar Chart

The results will be a bar chart with three bars for each department, similar to the chart
shown in this figure.

Figure 2–27 Bar Chart Presentation of Data

2.28 ARCo Configuration Files and Scripts

ARCo Configuration Files and Scripts

2-110 Oracle Grid Engine User Guide

2.28.1 About dbwriter
The dbwriter component writes and deletes the reporting data in the reporting
database. It performs the following tasks:

■ Reads raw data from the reporting file and writes this raw data to the reporting
database.

■ Calculates derived values. You can configure which values to calculate, as well as
the rules that govern the calculations.

■ Deletes outdated data. You can configure how long to keep data.

The sge_qmaster component generates the reporting file. You can configure the
generation of the reporting file.

When dbwriter starts up, it calculates derived values. dbwriter also deletes
outdated records at startup. If dbwriter runs in continuous mode, dbwriter
continues to calculate derived values and to delete outdated records at hourly
intervals, or at whatever interval you specify. See Derived Values and Deletion Rules.

You can specify in a XML file the values that you want to calculate and the records
that you want to delete. The path to this file is specified during installation. To change
the path to the file, edit the DBWRITER_CALCULATION_FILE parameter in the
dbwriter.conf file.

2.28.1.1 inst_dbwriter Command Options
The inst_dbwriter script, used for installing dbwriter, is located at $SGE_
ROOT/dbwriter and supports the following options:

■ -nosmf - Disables SMF for Solaris 10+ machines. Instead the regular RC scripts
are used.

■ -upd - Removes old RC scripts not containing the SGE_CLUSTER_NAME and starts
the installation. This option must be used if you are upgrading from version prior
to 6.2.

■ -rmrc - Removes 6.2 RC scripts or SMF service.

■ -h - Prints usage text to stdout.

If no option is specified, installation is started.

2.28.1.2 dbwriter Configuration Parameters
During dbwriter module installation, the following configuration parameters are
collected. These parameters are stored in the $SGE_ROOT/$SGE_
CELL/common/dbwriter.conf file. Changes to the dbwriter.conf file require
restarting the dbwriter.

Table 2–2 dbwriter Configuration Parameters

Parameter Description Sample Value

DBWRITER_
USER_PW

Password of the database user with the
write privileges

password

DBWRITER_USER Name of the database user with the write
privileges; this user will become the owner
of the database objects that will be created.

arco_write

ARCo Configuration Files and Scripts

Using Grid Engine 2-111

2.28.1.3 sgedbwriter Command Options
The sgedbwriter script, used for starting and stopping dbwriter, is located at
$SGE_ROOT/$SGE_CELL/common and supports the following sub-commands:

■ start - Starts the dbwriter as a background process. If no options are supplied,
this is the default behavior. You can supply three options with the start command:

■ -debug - Start the dbwriter in debug mode. This allows you to attach a
debugger.

■ -debug_port port-number - Specify a port to use for debugging. The
default is 8000.

■ -nosmf - Force no SMF

READ_USER Name of the ARCo read user; This user will
be granted SELECT privileges on the
objects owned by the user specified above,
and on Oracle it is also used to create
synonyms.

arco_read

DBWRITER_URL JDBC URL to database jdbc:postgresql
://host.domain:
5432/arco

DB_SCHEMA Name of the database schema for the
objects

public

TABLESPACE Tablespace used for storing tables pg_default

TABLESPACE_
INDEX

Tablespace used for storing indexes pg_default

DBWRITER_
CONTINOUS

Continuous running mode; Default value is
true

true

DBWRITER_
INTERVAL

Interval in s for continuous; Default value
is 60 seconds

60

DBWRITER_
DRIVER

JDBC driver name org.postgresql.
Driver

DBWRITER_
REPORTING_
FILE

File name of reporting file /myroot/opt/sge
62/default/comm
on/reporting

DBWRITER_
CALCULATION_
FILE

File containing calculation rules /myroot/opt/sge
62/dbwriter/dat
abase/mysql/dbw
riter.xml

DBWRITER_SQL_
THRESHOLD

The dbwriter writes a warning into the log
file if the execution of a single statement
takes longer then the DBWRITER_SQL_
THRESHOLD. The threshold is specified in
seconds. If the threshold is 0, no warning
will be written.

0

SPOOL_DIR Spool directory of the dbwriter log files and
pid file is stored in this directory

/myroot/opt/sge
62/default/spoo
l/dbwriter

DBWRITER_
DEBUG

Debug level. Valid values are: WARNING,
INFO, CONFIG, FINE, FINER, FINEST,
ALL

INFO

Table 2–2 (Cont.) dbwriter Configuration Parameters

Parameter Description Sample Value

ARCo Configuration Files and Scripts

2-112 Oracle Grid Engine User Guide

■ stop - Stops the dbwriter process.

■ printsetting - Prints the specified dbwriter setting to stdout. The following
settings are available:

■ pid_file - Prints the default pid file

■ log_file - Print the default log file

■ spool_dir - Print the default spool directory

■ -h - Prints usage text to stdout.

The content environment variable JVMARGS is treated as options for the Java virtual
machine. If $JAVA_HOME is, set the Java virtual machine at $JAVA_HOME/bin/java
is started.

2.28.2 About Reporting
The reporting file contains the following types of data:

■ Host load values and consumable resources

■ Queue consumable resources

■ Job logging

■ Job accounting

■ Share-tree usage

■ Advance reservation logging

■ Advance reservation accounting

Enabling Generation of the Reporting File
When the Grid Engine system is first installed, the reporting file is disabled. To use
ARCo, you must enable the reporting file for the cluster. Once enabled, the reporting
file will be generated by sge_qmaster. By default, the reporting file is located in
$SGE_ROOT/$SGE_CELL/common. The path to the file is stored in the DBWRITER_
REPORTING_FILE parameter of the dbwriter.conf file.

Once the reporting file is enabled, the dbwriter can read raw data from the reporting
file and write it to the reporting database.

For complete details about installing and configuring ARCo, see Installing the
Accounting and Reporting Console (ARCo).

 How to Enable Generation of the Reporting File From the Command Line
To enable reporting from the command line, use the qconf -mconf command to set
the reporting_params attributes, as described in the last step of How to Enable
Generation of the Reporting File With QMON.

 How to Enable Generation of the Reporting File With QMON
1. To enable reporting with QMON, on the QMON Main Control window click the

Cluster Configuration button.

2. On the Cluster Configuration dialog box, select the global host, and click Modify.

3. On the Cluster Settings dialog box, click the Advanced Settings tab.

4. In the Reporting Parameters field, set the following parameters:

■ Set accounting to true. true is the default value.

ARCo Configuration Files and Scripts

Using Grid Engine 2-113

■ Set reporting to true.

■ Set flush_time to 00:00:15. 00:00:15 is the default value.

■ Set joblog to true.

■ Set sharelog to 00:10:00. 00:10:00 is the default value.

 Reporting Module Configuration Parameters
During reporting module installation, the following configuration parameters are
collected. These parameters are stored in the $SGE_ROOT/$SGE_
CELL/arco/reporting/config.xml file. Changes to the config.xml file require
restarting the smcwebserver.

■ The <database> element includes several attributes that configure the database
connection for the application to use. This element includes two sub-elements and
several attributes. Attributes include the following:

■ name

■ host

■ port

■ schema

■ clusterName Sub-elements include the following:

■ <driver>

■ <user>, which has three attributes:

* name

* passwd

* maxConnections

■ The <appUser> element identifies each user that is permitted to use the reporting
feature. One appUser element is provided for each user that is permitted to use the
reporting feature.

■ The <storage> element defines the storage of ARCo queries and results. This
element includes three sub-elements:

■ <root> defines the path of the spool directory

■ <queries> defines the directory where to store queries

■ <results> defines the directory where to store results

Example - Reporting Module Configuration File
The following config.xml example illustrates a single cluster configuration. For a
multiple cluster configuration, there would be multiple <database> tags.

<configuration>
 <!--
 Configure the database connection to be used by the application
 -->
 <database name="arco" host="host.domain" port="5432" schema="public"

Note: You can edit the config.xml file to add additional users.
Provide another appUser element for each user to add.

ARCo Configuration Files and Scripts

2-114 Oracle Grid Engine User Guide

clusterName="testsuite">
 <driver type="postgres">
 <javaClass>org.postgresql.Driver</javaClass>
 </driver>
 <user name="arco_read" passwd="ed5sq937d20ecf5c" maxConnections="10"/>
 </database>

 <applUser>
 admin
 </applUser>
 <applUser>
 sgetest1
 </applUser>
 <applUser>
 sgetest2
 </applUser>

 <storage>
 <root>/var/spool/arco</root>
 <queries>queries</queries>
 <results>results</results>
 </storage>
</configuration>

2.28.3 Other ARCo Utilities

arcorun
The arcorun utility enables you to view and run ARCo queries from the command
line. You can view query output in XML (default), CSV, PDF or HTML format. You
can also set values for late-binding parameters.

Example - Running a Query
A query is run by simply invoking the arcorun command with the name of the query
as the argument:

% $SGE_ROOT/$SGE_CELL/arco/reporting/arcorun Statistics

If a query name contains whitespaces you have to put double-quotes around the query
name:

% $SGE_ROOT/$SGE_CELL/arco/reporting/arcorun "Host Load"

updatedb.sh
The updatedb.sh utility enables you to preview changes that will be performed on
your database. You supply your existing database parameters and choose y in the
following prompt:

Shall we only print all sql statements which will be executed during the upgrade?
(y/n) [y] >>

Note: You must run the arcorun utility on a host from which the
ARCo spooling directory (default: /var/spool/arco) is accessible.

Creating Cross-Cluster Queries

Using Grid Engine 2-115

After that, the SQL commands that will be executed during update/upgrade are
printed to the stdout.

It is not recommended to use this as a substitute for a regular dbwriter
update/upgrade. If you would choose option n, the SQL commands would be
executed and only your database definition would be updated, but you would still
need to perform regular dbwriter re-installation to also update other parts of
dbwriter that might have changed.

2.29 Creating Cross-Cluster Queries

Although you could JOIN table from one schema with a one from other schema, it
might not be useful to do that, as the data comes from separate Grid Engine cluster.
However, queries that combine together the results of two or more separate queries
could be beneficial.

The syntax is:

select_statement1 UNION [ALL] select_statement2
select_statement1 INTERSECT [ALL] select_statement2
select_statement1 EXCEPT [ALL] select_statement2

The select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR
UPDATE or FOR SHARE clause. These clauses can be appended at the end of all the
chained UNION, INTERSECT and EXCEPT queries, which will then be applied to the
combined returned result.

UNION effectively appends the result of select_statement1 to the result of select_
statement2 (although there is no guarantee that this is the order in which the rows
are actually returned). Furthermore, it eliminates duplicate rows from its result, in the
same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of select_statement1 and
in the result of select_statement2. Duplicate rows are eliminated, unless
INTERSECT ALL is used

EXCEPT returns all rows that are in the result of select_statement1 but not in the
result of select_statement2. Duplicate rows are eliminated, unless EXCEPT ALL
is used.

In order to calculate the union, intersection, or difference of two queries, the two
queries must be "union compatible", which means that they return the same number of
columns and the corresponding columns have compatible data types. The query
statements must use the fully qualified object names, that is,
schemaname.tablename, schemaname.viewname, respectively.

Note: Prerequisite for performing cross-cluster queries is that you
have configured your database with multiple schemas (not necessary
for MySQL), and granted one user SELECT privileges an all the
objects in all of the schemas. You must use this user when connecting
to the database to perform cross-cluster queries.

Note: In MySQL the syntax would be database.tablename,
database.viewname, respectively.

Examples

2-116 Oracle Grid Engine User Guide

2.30 Examples
The following two tables are in schema arco_write_london and arco_write_
denver:

2.30.1 Example - arco_write_london.sge_user
+------+--------+
| u_id | u_user |
+------+--------+
1	jade
2	julie
3	john
+------+--------+

2.30.2 Example - arco_write_denver.sge_user
+------+--------+
| u_id | u_user |
+------+--------+
1	john
2	david
3	rose
+------+--------+

Connected as the multi_read user who has privileges on all the schemas we execute
the following queries:

1. SELECT u_user FROM arco_write_london.sge_user UNION SELECT u_user
FROM arco_write_denver.sge_user;

+--------+
| u_user |
+--------+
| david |
| jade |
| john |
| julie |
| rose |
+--------+

2. SELECT u_user from arco_write_london.sge_user UNION ALL SELECT u_user
FROM arco_write_denver.sge_user;

+--------+
| u_user |
+--------+
| jade |
| julie |
| john |
| john |
| david |
| rose |
+--------+

3. SELECT u_user FROM arco_write_london.sge_user INTERSECT SELECT u_user
FROM arco_write_denver.sge_user;

+--------+
| u_user |

Derived Values and Deletion Rules

Using Grid Engine 2-117

+--------+
| john |
+--------+

4. SELECT u_user FROM arco_write_london.sge_user EXCEPT SELECT u_user
FROM arco_write_denver.sge_user;

+--------+
| u_user |
+--------+
| jade |
| julie |
+--------+

2.31 Derived Values and Deletion Rules

2.31.1 Derived Values
At dbwriter startup, and in continuous mode once an hour, derived values are
calculated. You can configure which values to calculate in an XML file, which is by
default in $SGE_ROOT/dbwriter/database/<database_type>/dbwriter.xml.
<database_type> defines the type of database being used; currently, Oracle,
PostgreSQL and MySQL are supported. The path to the configuration file is passed to
dbwriter during installation and is stored in the dbwriter.conf file as the value of
the parameter DBWRITER_CALCULATION_FILE.

The configuration file uses an XML format, and contains rules for both derived values
and deleted values (described in the next section).

2.31.1.1 Derived Values Format
The rules for derived values have the following format.

1. The top-level start tag is <derive>. The <derive> tag has three required
attributes:

■ object - Based on this attribute, the derived value is ultimately stored in one of:
sge_host_values, sge_queue_values, sge_user_values, sge_
group_values, sge_department_values, sge_project_values. The
object is one of the following:

– host

– queue

– project

– department

– user

– group

■ interval - The time range specifying how often to calculate the derived values.
The time range is one of the following:

– day

– hour

– month

Derived Values and Deletion Rules

2-118 Oracle Grid Engine User Guide

– year

■ variable - This is the name of the variable to hold the calculated data.

2. A second-level start tag describes the way that the value should be derived. This
tag must be either <sql> or <auto>:

■ <sql> - This tag contains an SQL statement used for calculating the derived
values. The exact syntax of the entries depends upon the type of database
being used. The statement must produce the following columns:

– time_start - Together with time_end, specifies the time period for the
calculated value.

– time_end

– value - The calculated derived value.

■ The SQL statement can contain the following placeholders. dbwriter
replaces the placeholders for each query, based on a rule:

– time_start - Start time for the query. dbwriter searches for the last
previously calculated derived value from this rule, and uses this
timestamp as the start time for the next query.

– time_end - End time for the query. This timestamp specifies the end of
the last passed time range. For example, if the time range is day, and if
derived values are calculated at 00:30, 00:00 is taken as time_end.

– _key_0,key_1, . . . ,key_n_ - Components of the primary key for
the specified object type. For example, the sge_hosts table has the
primary h_hostname. If a rule is processed for the host object type, one
query is executed per entry in the sge_hosts table, the _key_0_
placeholder in the SQL statement is replaced by the hostname. The sge_
queue table has a composed primary key that is made up of q_qname
and q_hostname.

■ <auto> - For certain simple derived values, this tag can be used instead of a
full SQL query.This tag has two attributes:

– function - which gives the aggregate function to apply to the variable.
This can be any function valid for the type of database being used. Some
typical functions are AVG, SUM, VALUE, COUNT, MIN or MAX.

– variable - which can be any variable tracked in the following tables:
sge_host_values, sge_queue_values, sge_user_values, sge_
group_values, sge_department_values, sge_project_values
the variable specified must be from the table indicated by the object
attribute of the enclosing <derive> tag, for example, if the object is host,
the variable must be found in sge_host_values.

3. Two end tags that match the two start tags.

2.31.1.2 Derived Values Examples
Here is an example of a derivation rule using the <sql> tag. The sge_queue table has
a composed primary key comprised of q_qname and q_hostname. For a rule
specified for the queue object_type, a query will be made for each entry in the
sge_queue table, the placeholders _key_0 will be replaced by the queue name and
key_1_ will be replaced by the hostname.

<!--average queue utilization per hour-->
 <derive object="queue" interval="hour" variable="h_utilized">

Derived Values and Deletion Rules

Using Grid Engine 2-119

 <sql>
 SELECT DATE_TRUNC('hour', qv_time_start) AS time_start,
 DATE_TRUNC('hour', qv_time_start) + INTERVAL '1 hour' AS time_
end,
 AVG(qv_dvalue * 100 / qv_dconfig) AS value
 FROM sge_queue_values
 WHERE qv_variable = 'slots' AND
 qv_parent = (SELECT q_id FROM sge_queue WHERE q_qname = __key_0__
AND q_hostname = __key_1__) AND
 qv_time_start <= '__time_end__' AND
 qv_time_end > '__time_start__'
 GROUP BY time_start
 </sql>
 </derive>

Here is an example when the rule above is processed by the dbwriter. A query will
be made for each entry in the sge_queue table, the placeholders _key_0 will be
replaced by the queue name and key_1_ will be replaced by the hostname. In this
example, the results of these queries will be inserted in the sge_queue_values table,
because object="queue".

SELECT DATE_TRUNC('hour', qv_time_start) AS time_start,
 DATE_TRUNC('hour', qv_time_start) + INTERVAL '1 hour' AS time_end,
 AVG(qv_dvalue * 100 / qv_dconfig) AS value
FROM sge_queue_values
WHERE qv_variable = 'slots' AND
 qv_parent = (SELECT q_id FROM sge_queue WHERE q_qname = 'all.q' AND q_
hostname = 'my.hostname') AND
 qv_time_start <= '2008-05-21 00:00:00.0' AND
 qv_time_end > '1970-01-01 01:00:00.0'
GROUP BY time_start;

Here is an example of a derivation rule using the <auto> tag.

<derive object="host" interval="day" variable="d_load">
 <auto function="AVG" variable="h_load" />
</derive>

2.31.2 Deleting Outdated Records
At dbwriter startup, and in continuous mode once an hour, outdated records will be
deleted. You can configure how these records are calculated in an XML file, by default
in $SGE_ROOT/dbwriter/database/<database_type>/dbwriter.xml.
<database_type> is the type of database being used; currently, Oracle, PostgreSQL
and MySQL are supported. The path to the configuration file is passed to dbwriter
during installation and is stored in the dbwriter.conf file as the value of the
parameter DBWRITER_CALCULATION_FILE.

2.31.2.1 Deletion Rules Format
The configuration file contains rules for both derived values and deleted values.
Deletion rules are of the following format.

■ A top-level start tag <delete> with three attributes:

■ scope - which specifies the type of data to be deleted. Valid entries are:

* job

* job_log

* share_log

Derived Values and Deletion Rules

2-120 Oracle Grid Engine User Guide

* host_values

* queue_values

* project_values

* department_values

* user_values

* group_values

* ar

Based on this attribute, the values are deleted from the table with the same
name with sge_ prepended.

■ time_range - which gives the unit of time_amount.

■ time_amount - which is the number of units (time_range) during which a
record is kept.

■ An optional second-level start tag <sub_scope>, which specifies an additional
condition for deletion. A subscope can be configured for all *_values scopes and
the share_log scope.

■ One or two end tags matching the two start tags

For certain scopes, a sub-scope can be configured. The sub-scope specifies an
additional condition for deletion. A sub-scope can be configured for all *_values
scopes and for the share_log scope. The following rules apply:

■ If a sub-scope is configured for a *_values rule, it contains a space-separated list
of variables to delete.

■ If a sub-scope is specified for the share_log, it contains a space-separated list of
share-tree nodes to delete.

■ If sub-scope are used, you should always have a fall-back rule without sub-scope,
which will delete all objects that are not explicitly named by the sub-scope.

Here is an example of a delete tag:

<?xml version="1.0" encoding="UTF-8"?>
<DbWriterConfig>
 <!-- keep host values for 2 years -->
 <delete scope="host_values" time_range="year" time_amount="2"/>

 <!-- keep queue values one month -->
 <delete scope="queue_values" time_range="month" time_amount="1">
 <sub_scope>slots</sub_scope>
 <sub_scope>state</sub_scope>
 </delete>
</DbWriterConfig>

2.31.2.2 Deletion Rules Examples
The following rule indicates that the four variables given in the subscope should be
deleted from the table sge_host_values after 7 days.

<delete scope="host_values" time_range="day" time_amount="7">
 <sub_scope>np_load_avg</sub_scope>
 <sub_scope>cpu<sub_scope>
 <sub_scope>mem_free</sub_scope>
 <sub_scope>virtual_free</sub_scope>
</delete>

ARCo Frequently-Asked Questions

Using Grid Engine 2-121

The following rule says to delete all variables from the table sge_host_values after
two years:

<delete scope="host_values" time_range="year" time_amount="2"/>

The following rule says to delete all records for user fred after one month:

<delete scope="share_log" time_range="month" time_amount="1">
 <sub_scope>fred</sub_scope>
</delete>

2.32 ARCo Frequently-Asked Questions

Do I need to re-install database server and create new database every time I
update/upgrade ARCo?
No. Generally, you want to keep inserting the data in the same database. You just need
to re-install dbwriter and Reporting software and during the installation supply
your existing database parameters. If a newer version of database model is available,
your existing ARCo database model will be updated during the installation of
dbwriter. See Upgrading ARCO.

Can I restore database backup into a database already containing data?
No. A database backup must only be restored into an empty database. Because ARCo
database is a relational database, there are primary key constrains defined on tables.
You would run into and SQL error if a primary key (unique identifier), you are trying
to restore, already exists in the database.

How do I change the debug level of the dbwriter?
You specify the debug level during the installation of dbwriter.

To change the debug level:

1. Stop the dbwriter.

$SGE_ROOT/$SGE_CELL/common/sgedbwriter stop

2. Edit the dbwriter configuration file ($SGE_ROOT/$SGE_
CELL/common/dbwriter.conf).

#
Debug level
Valid values: WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL
#
DBWRITER_DEBUG=INFO

3. Start the dbwriter.

$SGE_ROOT/$SGE_CELL/common/sgedbwriter stop

In general, you should use the default debug level, which is info. If you use a more
verbose debug level, you substantially increase the amount of data output by
dbwriter.

You can specify the following debug levels:

■ WARNING - Displays only severe errors and warnings.

ARCo Troubleshooting

2-122 Oracle Grid Engine User Guide

■ INFO - Adds a number of informational messages. INFO is the default debug
level.

■ CONFIG - Gives additional information that is related to dbwriter configuration,
for example, about the processing of rules.

■ FINE - Produces more information. If you choose this debug level, all SQL
statements run by dbwriter are outputted.

■ FINER - For debugging.

■ FINEST - For debugging.

■ ALL - For debugging, displays information for all levels.

How do I verify the version of the installed ARCo database model?
With Grid Engine 6.1 the table sge_version was introduced. This table contains the
installed versions of the ARCo database model.

Connect to your database, and as a superuser or the owner of the database objects
issue an SQL command:

SELECT * FROM sge_version;

2.33 ARCo Troubleshooting

PDF Exports in ARCo Require Lots of Memory
Huge reports can result in an OutOfMemoryException when they are exported to
PDF.

Workaround - Increase the JVM heap size for the Sun Java Web Console. The
following command sets the maximum heap size to 512 MB:

wcadmin add -p -a reporting java.options="... -Xmx512M ..."

After you change the heap size, restart the Sun Java Web Console as shown in this
command:

smcwebserver restart

Problem: Reporting module installation on Red Hat Enterprise Linux
On certain versions of RHEL, while using SJWC 3.0.x or 3.1.x, you might see following
error when during the reporting module installation:

Registering the SGE reporting module in the Sun Java Web Console
--
Must have administration privileges to execute this command.

Table 2–3 Installed Versions of ARCo Database Model

Column Type Description

v_id integer version id (with SGE6u1 the version id has
been set to 1)

v_version text Version text. Contains the Grid Engine
version when the database model has been
changed to this version

v_time timestamp Timestamp of the upgrade to this version

ARCo Troubleshooting

Using Grid Engine 2-123

Must have administration privileges to execute this command.
Must have administration privileges to execute this command.
Must have administration privileges to execute this command.
Creating the TOC file ... OK

If you run manually the command smcwebserver start, you might see this error:

Starting Sun Java(TM) Web Console Version 3.0.2 ...
Exception while starting container instance console: An exception was thrown while
executing
/var/opt/webconsole/domains/console/conf/wcstart nobody

These issues are related to the Sun Java Web Console.

Solution: Follow these steps:

■ Execute these two commands:

chmod +x /var/opt/webconsole/domains/console/conf/wcstart
chmod +x /var/opt/webconsole/domains/console/conf/wcstop

■ Manually edit the /etc/opt/webconsole/console/service.properties
file and add the following properties (replace the paths with fully qualified
names):

arco_app_dir=$SGE_ROOT/$SGE_CELL/arco/reporting
arco_logging_level=INFO
arco_config_file=$SGE_ROOT/$SGE_CELL/arco/reporting/config.xml

■ Create file reporting.reg in
/etc/opt/webconsole/console/prereg/com.sun.grid.arco_6.2u6
(this is a regnot file, which is normally created during deploy).

■ Add the following information to the regnot file, which you had created in the
previous step (replace paths with fully qualified names):

system=false
debug=0
context=reporting
type=webapp
location=$SGE_ROOT/$SGE_CELL/arco/reporting

■ As a root user, restart the smcwebserver

smcwebserver restart

After this ARCo should function correctly. However, you will still experience the
'Must have administration privileges to execute this command' while executing the
wcadmin command.

Problem: No application is registered with this Sun Java(TM) Web Console, or
you have no rights to use any applications that are registered.
The above error can happen on some Linux platforms, while using SJWC 3.0.x, if your
$JAVA_HOME is not set or is set to a version of Java that is less than 1.5. Another
indication of this problem is the absence of the following files: $SGE_ROOT/$SGE_

Note: The unsuccessful reporting installation has to be run prior to
performing these steps.

ARCo Troubleshooting

2-124 Oracle Grid Engine User Guide

CELL/arco/reporting/WEB-INF/tld and $SGE_ROOT/$SGE_
CELL/arco/reporting/WEB-INF/lib/registrationservlet.jar.

Solution: Follow these steps:

1. Set your $JAVA_HOME variable to at least version 1.5 of the Java software.

2. Reinstall the reporting module.

Problem: SEVERE: SQL error: ERROR: permission denied for tablespace pg_
default
The above SQL error is shown during installation of dbwriter.

Solution: You must always specify the tablespace, unless you are using MySQL. For
PostgreSQL, the default tablespace is pg_default. For Oracle, the default is typically
USERS. The arco_write user must be granted the CREATE privilege on this
tablespace. If the arco_write user does not have the sufficient privileges the above
error message appears.

In database console as a superuser issue a command and then repeat the installation:

GRANT CREATE ON TABLESPACE pg_default to arco_write;

Problem: SEVERE: SQL error: Column 'ju_start_time' in field list is ambiguous
The above error can happen on some minor release versions of MySQL server, namely
5.0.26 or 5.0.27, where MySQL considers, some more complicated queries as
syntactically incorrect. Newer versions of MySQL server handle them correctly.

■ If you are doing a fresh ARCo installation and not an upgrade, you can safely edit
the $SGE_ROOT/dbwriter/database/mysql/dbdefinition.xml file.
Remove everything contained between the <version id="6" name="6.1u3">
</version> tags, except the last item. So, the part should look like this:

<version id="6" name="6.1u3">
<item>
 <description>Update version table </description>
 <sql>
 INSERT INTO sge_version (v_id, v_version, v_time)
 VALUES(6, '6.1u3', current_timestamp)
 </sql>
 </item>
</version>

■ If you are upgrading, upgrade your MySQL Server to a higher version, before
proceeding with dbwriter installation.

Problem: SEVERE: SQL error: ORA-01031: insufficient privileges
The above error may be caused during the installation of dbwriter, while the
synonyms are being created. Because arco_read is the user who uses the synonyms,
in ARCo versions > 6.1u4 the synonyms are being created by user arco_read, in the
schema of user arco_read. Thus, the user arco_read needs to be granted the
privilege to create synonyms. The ARCo users should be granted the following set of
privileges:

GRANT CREATE TABLE, CREATE VIEW, CREATE SESSION TO "ARCO_WRITE";
GRANT CREATE SYNONYM, CREATE SESSION TO "ARCO_READ";

ARCo Troubleshooting

Using Grid Engine 2-125

Problem: SEVERE: SQL error: ORA-01749: you may not GRANT/REVOKE
privileges to/from yourself
The above SQL error is shown during installation of dbwriter.

Solution: During the installation, after the connection test and database version check,
you are prompted to enter the name of the user which has a restricted access to the
database arco_read. The ARCo web application connects to the database using the
user arco_read, and because this user is not the owner of the database objects it
needs to be granted SELECT privilege on those objects. On Oracle synonyms are also
created in the schema of the arco_read user and thus password for this user is also
needed.

If you have entered arco_write instead of the arco_read user in the prompt
below, you would see the errors above. Repeat installation and provide the correct
user name.

The ARCo web application connects to the database
with a user which has restricted access.
The name of this database user is needed to grant
him access to the sge tables.
This user will create the synonyms for the ARCo
tables and views, so the user's password is needed.

Enter the name of this database user [] >> ARCO_READ

Enter the password of the database user >>
Retype the password >>

Problem: SEVERE: SQL error: ORA-00955: name is already used by an existing
object
The above SQL error is shown during installation of dbwriter.

Solution: Same as in the error above.

Problem: The table/view drop-down menu of a simple query definition does not
contain any entry, but the tables are defined in the database.
Solution: The problem normally occurs when using Oracle as the database server.
During the installation of the reporting module, wrong database schema name has
been specified. For Oracle, the database schema name is equal to the name of the
database user, which is used by dbwriter (the default name is arco_write). For
Postgres, the database schema is by default public, or if you have configured separate
schemas, it is equal to the name of the database user, which is used by dbwriter.

Problem: Connection refused.
Solution: The smcwebserver might be down. Start or restart the smcwebserver.

Problem: The list of queries or the list of results is empty.
Solution: The cause can be any of the following:

Note: On PostgreSQL or MySQL, you will not see this error during
installation of dbwriter but you will not be able to run any queries
from the ARCo web application, because the arco_read user has not
been granted the SELECT privileges on the database objects.

ARCo Troubleshooting

2-126 Oracle Grid Engine User Guide

■ No queries or results are available in the query /var/spool/arco/queries,
results directory /var/spool/arco/results respectively.

■ Queries in the XML files are syntactically incorrect. Check the log file
/var/log/webconsole/console/console_debug_log for error messages
from the XML parser.

■ User noaccess has no read or write permissions on the query or results directory.

Problem: The list of available database tables is empty.
Solution: The cause can be any of the following:

■ The database is down. Start or restart the database.

■ No more database connections are available. Increase the number of allowable
connections to the database.

■ An error exists in the configuration file of the application. Check the configuration
for wrong database users, wrong user passwords, or wrong type of database, and
then restart the application.

Problem: The list of selectable fields is empty.
Solution: No table is selected. Select a table from the list.

Problem: The list of filters is empty.
Solution: No fields are selected. Define at least one field.

Problem: The sort list is empty.
Solution: No fields are selected. Define at least one field.

Problem: A defined filter is not used.
Solution: The filter may be inactive. Modify the unused filter and make it active.

Problem: The late binding in the advanced query is ignored, but the execution
runs into an error.
Solution: The late binding macro has a syntactical error. The syntax for the late
binding in advanced query is:

LATEBINDING { <column>;<operator>;<default value> }

 <column> name if the latebinding
 <operator> a SQL operator (e.g. = < > in ..)
 <value> default value (e.g. 'localhost')

Example
select * from sge_host where LATEBINDING {h_hostname; like; a%}
select * from sge_host where LATEBINDING {h_hostname; in; ('localhost',
'foo.bar')}

Problem: The breadcrumb is used to move back, but the login screen is shown.
Solution: The session has timed out. Log in again, or raise the session timeout value
for the Sun Java Web Console (SJWC). To increase the session timeout value to 60
minutes, as a superuser, on the host where the (SJWC) is installed, issue this
command:

wcadmin add -p -a reporting session.timeout.value=60

ARCo Troubleshooting

Using Grid Engine 2-127

Problem: The view configuration is defined, but the default configuration is
shown.
Solution: The defined view configuration is not set to be visible. Open the view
configuration and define the view configuration to be used.

Problem: The view configuration is defined, but the last configuration is shown.
Solution: The defined view configuration is not set to be visible. Open the view
configuration and define the view configuration to be used.

Problem: The execution of a query takes a very long time.
Solution: The results coming from the database are very large. Set a limit for the
results, or extend the filter conditions.

ARCo Troubleshooting

2-128 Oracle Grid Engine User Guide

3

Upgrading ARCO 3-1

3Upgrading ARCO

During the installation of dbwriter, the existing database schema version is checked
and updated, if a newer version is available.

During the installation of reporting, the following actions occur:

■ Predefined queries in the reporting spool directory (default: /var/spool/arco)
are overwritten.

■ The reporting module is unregistered from the Sun Java Web Console and
deployed again.

If you specify a different spool directory during re-installation of reporting, you will
need to move your custom queries and results from the spool directory of your
previous installation to the new directory, so that they appear in the Sun Java Web
Console. Before proceeding with the upgrade, read all the steps in:

■ How to Upgrade the ARCo Software

■ How to Migrate a PostgreSQL Database to a Different Schema

3.1 How to Migrate a PostgreSQL Database to a Different Schema
If you do not plan to perform cross-cluster queries, follow the standard ARCo upgrade
procedure. If you have an existing ARCo installation and want to use the multi-cluster
features, follow these steps to migrate existing PostgreSQL ARCo databases to the
schema configuration.

1. Prepare a database to which to migrate. Follow How to Configure the ARCo
Database with Multiple Schemas on PostgresSQL.

Note: The ARCo upgrade is in fact re-installation of the dbwriter
and reporting modules, during which you supply the parameters of
your existing database and database users.

Note: Only the predefined queries will be overwritten, none of your
custom queries will be modified.

Note: Throughout this section, in the code snippets and
accompanying text, the following values need to be replaced by your
appropriate names.

How to Migrate a PostgreSQL Database to a Different Schema

3-2 Oracle Grid Engine User Guide

■ postgres - the database superuser

■ arco - the database you are migrating to and that has schemas configured

■ filename - path to a file where all output from the database console will be
redirected. The postgres user must have write privileges to the file.

■ arco_write_london - the schema name you are migrating to.

■ arco_read_london - is the user used by reporting application to access the
database; search_path of this user is set to arco_write_london.

■ multi_read - is a a user used to perform cross-cluster queries; it must be able
to access all schemas and read all object in the schemas.

2. Restore data from your first database backup file into arco database. See
http://www.postgresql.org/docs/8.1/interactive/backup.html.

3. Change to the database superuser.

su - postgres

4. Log in to the arco database.

> psql arco

5. Change the output display, so that column name headings and row count footer
are not shown.

arco=# \t
 Showing only tuples.

6. Redirect the output of a query to a file. The postgres user must have write
privileges to the file.

arco=# \o filename

7. Execute the following command to generate commands for moving each table to a
different schema.

arco=# select 'alter table ' || tablename || ' set schema arco_write_london;'
 from pg_tables where schemaname='public';

8. Execute the following command to generate commands for moving each view to a
different schema.

arco=# select 'alter table ' || viewname || ' set schema arco_write_london;'
 from pg_views where schemaname='public';

9. Execute the following commands to generate commands for granting arco_
read_london select privileges on all the database objects in the specified schema.

arco=# select 'grant select on ' ||schemaname||'.'||tablename|| ' to arco_read_
london;'
 from pg_tables where schemaname='arco_write_london';
arco=# select 'grant select on ' ||schemaname||'.'||viewname|| ' to arco_read_
london;'

Note: After restoring a database backup into a new database with
schemas, database object are restored into the default public schema.
Hence, you need to restore one backup at a time and only after
moving objects to a different schema, you can restore the next backup.

http://www.postgresql.org/docs/8.1/interactive/backup.html

How to Migrate a PostgreSQL Database to a Different Schema

Upgrading ARCO 3-3

 from pg_views where schemaname='arco_write_london';

10. Reset the psql console to the default state.

arco=# \o
arco=# \t

11. Run all the commands from the created file.

arco=# \i <filename>

12. Restore the next backup, and follow the steps 3 - 9, changing the schema and user
names appropriately.

13. Create the multi_read user.

arco=# CREATE USER multi_read WITH PASSWORD 'your_password';

14. Grant multi_read usage on all schemas.

arco=# GRANT USAGE ON SCHEMA arco_write_london TO multi_read;

15. Repeat the previous step for each schema, changing the schema name.

16. Execute steps 5 - 6.

17. Execute the following commands to generate commands granting multi_read
select privilege on all database object in all the schemas.

arco=# select 'grant select on ' ||schemaname||'.'||tablename|| ' to multi_
read;'
 from pg_tables where schemaname in ('arco_write_london', 'next_schema_
name', ...);
arco=# select 'grant select on ' ||schemaname||'.'||viewname||' to multi_read;'
 from pg_views where schemaname in ('arco_write_london', 'next_schema_
name', ...);

18. Execute steps 10 - 11.

19. Reinstall dbwriter.

20. Reinstall reporting.

Note: Remember to use a different output filename or delete the
previous file.

Note: Remember to use a different output filename or delete the
previous file.

Note: If upgrading from version < 6.2, you must run the installations
script with option -upd. This will remove existing RC scripts. During
the installation, point each dbwriter to the newly created database
with multiple schemas and specify appropriate arco_write_
cluster user and schema. See How to Install dbwriter.

How to Upgrade the ARCo Software

3-4 Oracle Grid Engine User Guide

3.2 How to Upgrade the ARCo Software
1. Ensure that there are no running or pending jobs.

2. Follow information for shutting down the cluster. See Upgrading From a Previous
Release of the Grid Engine Software.

3. Ensure that the reporting file has been completely processed by dbwriter, so all
the job information from the previous Grid Engine installation has been inserted
into the database. There should be no reporting or reporting.processing file
in the $SGE_ROOT/$SGE_CELL/common directory.

4. Once the reporting file has been processed, do the following on the dbwriter
host:

1. Source the cluster settings.sh (or .csh) file.

2. Stop the dbwriter

> $SGE_ROOT/$SGE_CELL/common/sgedbwriter stop

5. Finish upgrading Grid Engine. See Upgrading From a Previous Release of the Grid
Engine Software.

6. Back up the existing ARCo databases. Refer to your database manuals on how to
backup a database.

7. (Optional) If you plan to perform cross-cluster queries and have PostgreSQL, go to
How to Migrate a PostgreSQL Database to a Different Schema; otherwise,
continue with the next step.

8. Reinstall dbwriter.

9. Reinstall reporting. See How to Install Reporting.

Note: During the re-installation of the reporting module, enter the
required information for all the configured database schemas. See
How to Install Reporting.

Note: After finishing the Grid Engine upgrade, qmaster can be
started and jobs submitted to minimize the downtime, as long as
dbwriter is not started.

Note: You might want to migrate your existing PostgreSQL
databases under a single one with multiple schemas, even if you do
not plan to perform cross-cluster queries, but you simply like to
consolidate all under one roof.

Note: If upgrading from version < 6.2, you must run the installations
script with option -upd. This will remove existing RC scripts. See
How to Install dbwriter.

A

Command Line Interface Ancillary Programs A-1

ACommand Line Interface Ancillary Programs

A.1 List of Ancillary Programs
The Grid Engine system provides the following set of ancillary programs:

Table A–1 Ancillary Programs

Program Description

qacct Extracts arbitrary accounting information from the cluster log file. For
more information, see Oracle Grid Engine Administration Guide for
generating accounting statistics.

qalter Changes the attributes of submitted but pending jobs.

qconf Provides the user interface for cluster configuration and queue
configuration. For more information about using QCONF, see Oracle
Grid Engine Administration Guide.

qdel Enables a user to delete one or more jobs. A manager or operator can
delete jobs belonging to any user, while regular users can only delete
their own jobs. For more information, see Monitoring and Controlling
Jobs.

qhold Holds back submitted jobs from execution.

qhost Displays status information about execution hosts.

qlogin Initiates a login session with automatic selection of a low-loaded,
suitable host.

qmake A replacement for the standard UNIX make facility. qmake extends
make by its ability to distribute independent make steps across a
cluster of suitable machines. For more information, see Parallel
Makefile Processing With qmake.

qmod Enables the owner to suspend or enable a queue. All currently active
processes that are associated with this queue are also signaled. For
more information, see Monitoring and Controlling Queues and
Monitoring and Controlling Jobs.

qmon Provides an X Windows Motif command interface and monitoring
facility.

qping Checks application status of Grid Engine daemons.

qquota Shows current usage of Grid Engine resource quotas. For more
information, see Oracle Grid Engine Administration Guide for
information about how to monitor resource quota utilization from the
command line.

User Access to the Ancillary Program

A-2 Oracle Grid Engine User Guide

A.2 User Access to the Ancillary Program
The following table shows the command capabilities that are available to the different
user categories:

qrdel Deletes Grid Engine advance reservations. For more information about
how to configure advance reservations from the command line, see
Oracle Grid Engine Administration Guide.

qresub Creates new jobs by copying jobs that are running or pending.

qrls Releases jobs from holds that were previously assigned to them, for
example, through qhold.

qrsh Can be used for various purposes, such as the following:

■ To provide remote execution of interactive applications through
the Grid Engine system. qrsh is comparable to the standard
UNIX facility rsh. For more information, see Remote Execution
With qrsh.

■ To allow for the submission of batch jobs that, upon execution,
support terminal I/O and terminal control. Terminal I/O includes
standard output, standard error, and standard input.

■ To provide a submission client that remains active until the batch
job finishes.

■ To allow for the Grid Engine software-controlled remote
execution of the tasks of parallel jobs.

qrstat Shows the status of Grid Engine advance reservations. For more
information about how to configure advance reservations from the
command line, see Oracle Grid Engine Administration Guide.

qrsub Submits an advance reservation to Grid Engine. For more information
about how to configure advance reservations from the command line,
see Oracle Grid Engine Administration Guide.

qselect Prints a list of queue names corresponding to specified selection
criteria. The output of qselect is usually sent to other Grid Engine
system commands to apply actions on a selected set of queues.

qsh Opens an interactive shell in an xterm on a lightly loaded host. Any
kind of interactive jobs can be run in this shell. For more information,
see How to Submit Interactive Jobs From the Command Line.

qstat Provides a status listing of all jobs and queues associated with the
cluster. For more information, see How to Monitor Jobs From the
Command Line.

qsub The user interface for submitting batch jobs to the Grid Engine system.

qtcsh A fully compatible replacement for the widely known and used UNIX
C shell (csh) derivative, tcsh. qtcsh provides a command shell with
the extension of transparently distributing execution of designated
applications to suitable and lightly loaded hosts through Grid Engine
software. For more information see, Transparent Job Distribution With
qtcsh.

Table A–2 User Access to Ancillary Programs

Command Manager Operator Owner User

qacct Full Full Own jobs only Own jobs only

qalter Full Full Own jobs only Own jobs only

Table A–1 (Cont.) Ancillary Programs

Program Description

User Access to the Ancillary Program

Command Line Interface Ancillary Programs A-3

qconf Full No system
setup
modification
s

Show only
configurations and
access permissions

Show only
configurations and
access permissions

qdel Full Full Own jobs only Own jobs only

qhold Full Full Own jobs only Own jobs only

qhost Full Full Full Full

qlogin Full Full Full Full

qmod Full Full Own jobs and
owned queues only

Own jobs only

qmon Full No system
setup
modification
s

No configuration
changes

No configuration
changes

qrexec Full Full Full Full

qselect Full Full Full Full

qsh Full Full Full Full

qstat Full Full Full Full

qsub Full Full Full Full

Table A–2 (Cont.) User Access to Ancillary Programs

Command Manager Operator Owner User

User Access to the Ancillary Program

A-4 Oracle Grid Engine User Guide

	Contents
	1 Getting Started
	2 Using Grid Engine
	3 Upgrading ARCO
	A Command Line Interface Ancillary Programs
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Getting Started
	1.1 How the System Operates
	1.2 How Resources Are Matched to Requests
	1.3 A Banking Analogy
	1.3.1 Jobs and Queues

	1.4 Usage Policies
	1.4.1 Using Tickets to Administer Policies
	1.4.2 Using the Urgency Policy to Assign Job Priority

	1.5 Choosing a User Interface
	1.5.1 QMON - The Graphical User Interface
	1.5.2 The Command Line Interface
	1.5.3 The Distributed Resource Management Application API (DRMAA)

	1.6 Users and User Categories

	2 Using Grid Engine
	2.1 Interacting With Grid Engine as a User
	2.1.1 Launching QMON From the Command Line
	2.1.2 Customizing QMON
	2.1.3 Using the Command-Line Interface

	2.2 Displaying User Properties
	2.2.1 User Access Permissions
	2.2.2 Displaying Managers, Operators, Owners, and User Access Permissions

	2.3 Displaying Host Properties
	2.4 Displaying Queue Properties
	2.4.1 Interpreting Queue Property Information

	2.5 Submitting Jobs
	2.5.1 How Jobs Are Scheduled
	2.5.2 Usage Policies
	2.5.3 Job Priorities
	2.5.4 Ticket Policies
	2.5.5 Queue Selection
	2.5.6 Defining Resource Requirements
	2.5.7 Requestable Attributes

	2.6 Submitting Batch Jobs
	2.6.1 About Shell Scripts
	2.6.2 Extensions to Regular Shell Scripts
	2.6.2.1 How a Command Interpreter is Selected
	2.6.2.2 Output Redirection
	2.6.2.3 Active Comments
	2.6.2.4 Environment Variables

	2.7 Submitting Array Jobs
	2.7.1 How to Configure Array Task Dependencies From the Command Line
	2.7.2 How to Submit an Array Job From the Command Line
	2.7.3 How to Submit an Array Job With QMON

	2.8 Submitting Interactive Jobs
	2.8.1 How to Submit Interactive Jobs From the Command Line
	2.8.1.1 Using qrsh to Submit Interactive Jobs
	2.8.1.2 Using qsh to Submit Interactive Jobs
	2.8.1.3 Using qlogin to Submit Interactive Jobs

	2.8.2 How to Submit Interactive Jobs With QMON

	2.9 Transparent Remote Execution
	2.9.1 Remote Execution With qrsh
	2.9.1.1 Invoking Transparent Remote Execution With qrsh

	2.9.2 Transparent Job Distribution With qtcsh
	2.9.2.1 qtcsh Usage

	2.9.3 Parallel Makefile Processing With qmake
	2.9.3.1 qmake Usage

	2.10 How to Submit a Simple Job From the Command Line
	2.11 How to Submit a Simple Job With QMON
	2.12 How to Submit an Extended Job From the Command Line
	2.13 How to Submit an Extended Job With QMON
	2.14 How to Submit an Advanced Job From the Command Line
	2.14.1 Specifying the Use of a Script or a Binary
	2.14.2 Default Request Files

	2.15 How to Submit an Advanced Job With QMON
	2.16 How to Configure Job Dependencies From the Command Line
	2.17 Monitoring Hosts from the Command Line
	2.17.1 Using qconf
	2.17.2 Using qhost

	2.18 How to Monitor Hosts With QMON
	2.18.1 Hosts Status

	2.19 Monitoring and Controlling Jobs
	2.19.1 How to Monitor Jobs From the Command Line
	2.19.2 How to Monitor Jobs With QMON
	2.19.2.1 How to Get Additional Information About Jobs With the QMON Object Browser

	2.19.3 How to Control Jobs From the Command Line
	2.19.4 How to Control Jobs With QMON
	2.19.5 How to Monitor Jobs by Email
	2.19.6 How to Monitor Jobs by Email With QMON

	2.20 Monitoring and Controlling Queues
	2.20.1 How to Control Queues From the Command Line
	2.20.2 How to Monitor and Control Cluster Queues With QMON
	2.20.2.1 Cluster Queue Status

	2.20.3 How to Monitor Queues With QMON

	2.21 Using Job Checkpointing
	2.21.1 Migrating Checkpointing Jobs
	2.21.2 File System Requirements for Checkpointing
	2.21.3 Writing a Checkpointing Job Script
	2.21.4 How to Submit a Checkpointing Job From the Command Line
	2.21.5 How to Submit a Checkpointing Job With QMON

	2.22 Managing Core Binding
	2.22.1 Submit Simple Jobs with Core Binding
	2.22.2 Submit Array Jobs with Core Binding
	2.22.3 Submit Parallel Jobs with Core Binding
	2.22.3.1 Submit Tightly Integrated Parallel Jobs with Core Binding

	2.23 Automating Grid Engine Functions Through DRMAA
	2.23.1 Developing With the C Language Binding
	2.23.1.1 Important Files for the C Language Binding
	2.23.1.2 Including the DRMAA Header File
	2.23.1.3 Compiling Your C Application
	2.23.1.4 Running Your C Application
	2.23.1.5 C Application Examples

	2.23.2 Developing With the Java Language Binding
	2.23.2.1 Important Files for the Java Language Binding
	2.23.2.2 Importing the DRMAA Java Classes and Packages
	2.23.2.3 Compiling Your Java Application
	2.23.2.4 How to Use DRMAA With NetBeans 5.x
	2.23.2.5 Running Your Java Application
	2.23.2.6 Java Application Examples

	2.24 Using the Accounting and Reporting Console
	2.25 Installing the Accounting and Reporting Console (ARCo)
	2.25.1 Configuring the Database Server
	2.25.2 How to Configure the ARCo Database on MySQL
	2.25.3 How to Configure the ARCo Database on PostgresSQL
	2.25.4 How to Configure the ARCo Database with Multiple Schemas on PostgresSQL
	2.25.5 How to Configure the MySQL Database Server
	2.25.5.1 MySQL Installation Tips
	2.25.5.2 Case Sensitivity in MySQL Database

	2.25.6 How to Configure the PostgresSQL Server
	2.25.7 Using the Oracle Database
	2.25.8 How to Add Authorized ARCo Users
	2.25.9 How to Install dbwriter
	2.25.10 Example dbwriter Installation
	2.25.11 How to Install Reporting
	2.25.12 Example Reporting Installation
	2.25.13 How to Install Sun Java Web Console

	2.26 Planning the ARCo Installation
	2.26.1 Supported Operating Platforms
	2.26.2 Required Software
	2.26.3 Disk Space Recommendations
	2.26.4 Multi-Cluster Support Overview
	2.26.5 Database Configuration Illustrations
	2.26.6 Schema Overview

	2.27 How to Start ARCo
	2.27.1 How to Start the Accounting and Reporting Console
	2.27.2 Creating and Modifying Simple Queries
	2.27.3 Creating and Modifying Advanced Queries
	2.27.4 Configuring the Query Results View
	2.27.5 Examples for Defining Graphical Views

	2.28 ARCo Configuration Files and Scripts
	2.28.1 About dbwriter
	2.28.1.1 inst_dbwriter Command Options
	2.28.1.2 dbwriter Configuration Parameters
	2.28.1.3 sgedbwriter Command Options

	2.28.2 About Reporting
	2.28.3 Other ARCo Utilities

	2.29 Creating Cross-Cluster Queries
	2.30 Examples
	2.30.1 Example - arco_write_london.sge_user
	2.30.2 Example - arco_write_denver.sge_user

	2.31 Derived Values and Deletion Rules
	2.31.1 Derived Values
	2.31.1.1 Derived Values Format
	2.31.1.2 Derived Values Examples

	2.31.2 Deleting Outdated Records
	2.31.2.1 Deletion Rules Format
	2.31.2.2 Deletion Rules Examples

	2.32 ARCo Frequently-Asked Questions
	2.33 ARCo Troubleshooting

	3 Upgrading ARCO
	3.1 How to Migrate a PostgreSQL Database to a Different Schema
	3.2 How to Upgrade the ARCo Software

	A Command Line Interface Ancillary Programs
	A.1 List of Ancillary Programs
	A.2 User Access to the Ancillary Program

